COURSE OVERVIEW
DE0087 : Fractured Reservoir Characterisation
OVERVIEW
| COURSE TITLE | : | DE0087 : Fractured Reservoir Characterisation |
| COURSE DATE | : | Sep 13 - Sep 17 2026 |
| DURATION | : | 5 Days |
| INSTRUCTOR | : | Dr. Steve Ehrenberg |
| VENUE | : | Cairo, Egypt |
| COURSE FEE | : | $ 8000 |
| Register For Course | ||
Course Description
This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.
More than fifty percent of the petroleum reservoirs are in carbonate rocks. In the Middle East, it is estimated that this number increases to seventy percent. A great number of these reservoirs are naturally fractured, e.g., Ghawar field, in Saudi Arabia, Cantarell field in Mexico and Yates field in the USA. These are three of the largest fields in the world. The interest in such fields has grown tremendously.
The presence of extensive networks of natural fractures creates a number of challenges for evaluating and optimizing recovery from naturally fractured reservoirs. The use of dual porosity or dual permeability models is often necessary, providing the basis for both analytical methods (such as used for pressure transient analysis) as well as for reservoir simulation. Appropriate application of dual porosity and dual permeability models, however, rely on: a) accurate representation of the fracture system as an equivalent porous and permeable medium, and b) accurate determination of the rates of fluid transport between matrix blocks and the fracture system.
This course is designed to provide different approaches for evaluation and characterization of heterogeneous naturally fractured carbonate reservoirs by wire-line log, core analysis and well testing. Different methods for modelling and dynamic simulation of naturally fractured reservoirs and case histories will be reviewed including multiple porosity model with structured grids and single porosity with unstructured grids. Production data analysis of unconventional reservoirs will also be reviewed.
The course covers the fractured reservoirs, learn how to recognize and evaluate natural fractured reservoir; the overall effect of natural fractures on subsurface fluid-flow; the techniques that employ outcrop and subsurface rock data; the methods for controlling short-term and long-term performance in fractured reservoirs; the various types of data necessary to evaluate and manage them; and the geologic aspects, origin and classification of fractured reservoirs.
During this interactive course, participants will learn the geologic aspects and petrophysics properties of carbonate rock; the overall effect of natural fractures on subsurface fluid-flow; the reservoir characterization principals and techniques that employ outcrop and subsurface rock data; the types of data necessary to characterize the natural fracture reservoir and the modelling work flow; the fracture reservoir characterizing model can be constructed emphazing on carbonate; the methods for controlling short-term and long-term performance in fractured reservoirs; and the geologic aspects, petrophysics and rock properties.
TRAINING METHODOLOGY
This interactive training course includes the following training methodologies:
LecturesPractical Workshops & Work Presentations
Hands-on Practical Exercises & Case Studies
Simulators (Hardware & Software) & Videos
In an unlikely event, the course instructor may modify the above training methodology for technical reasons.
VIRTUAL TRAINING (IF APPLICABLE)
If this course is delivered online as a Virtual Training, the following limitations will be applicable:
| Certificates | : | Only soft copy certificates will be issued |
| Training Materials | : | Only soft copy materials will be issued |
| Training Methodology | : | 80% theory, 20% practical |
| Training Program | : | 4 hours per day, from 09:30 to 13:30 |
OTHER SCHEDULED DATES
| Refrence | Date | Location | Instructor | Fee (USD) | Outline | Actions |
|---|---|---|---|---|---|---|
| DE0087 | Jan 04 - Jan 08 2026 (5 Days) | Doha, Qatar | Dr. Steve Ehrenberg | $ 8,500 | Outline | |
| DE0087 | Apr 26 - Apr 30 2026 (5 Days) | Dubai, UAE | Dr. Steve Ehrenberg | $ 8,000 | N/A | |
| DE0087 | May 18 - May 22 2026 (5 Days) | Seville, Spain | Dr. Steve Ehrenberg | $ 8,800 | N/A | |
| DE0087 | Aug 02 - Aug 06 2026 (5 Days) | Doha, Qatar | Dr. Steve Ehrenberg | $ 8,500 | Outline | |
| DE0087 | Oct 18 - Oct 22 2026 (5 Days) | Dubai, UAE | Dr. Steve Ehrenberg | $ 8,000 | N/A | |
| DE0087 | Dec 07 - Dec 11 2026 (5 Days) | London, United Kingdom | Dr. Steve Ehrenberg | $ 8,800 | N/A | |
| DE0087 | Jan 24 - Jan 28 2027 (5 Days) | Doha, Qatar | Dr. Steve Ehrenberg | $ 8,500 | N/A | |
| DE0087 | Mar 14 - Mar 18 2027 (5 Days) | Dubai, UAE | Dr. Steve Ehrenberg | $ 8,000 | N/A |
RELATED COURSES
DE0970 : Trouble-Free Drilling (Stuck Pipe Prevention)
- Date: Feb 01 - Feb 05 / 3 Days
- Location: Doha, Qatar
- Course Details Register
DE0960 : Well Composite, Construction Integrity & Completion
- Date: Feb 01 - Feb 05 / 3 Days
- Location: Cairo, Egypt
- Course Details Register
DE0009(KP4) : Integration of Core & Log Data
- Date: Feb 01 - Feb 05 / 3 Days
- Location: Doha, Qatar
- Course Details Register
DE0923 : Petroleum Project Economics & Risk Analysis
- Date: Feb 01 - Feb 05 / 3 Days
- Location: Dubai, UAE
- Course Details Register
