HTME

COURSE OVERVIEW

ME0960 : Combustion Techniques
OVERVIEW
COURSE TITLE : ME0960 : Combustion Techniques
COURSE DATE : Nov 25 - Nov 29 2024
DURATION : 5 Days
INSTRUCTOR : Mr. Den Bazley
VENUE : Abu Dhabi, UAE
COURSE FEE : $ 5500
Register For Course Outline
OTHER SCHEDULED DATES
**---- No Other Scheduled Dates ----**

Course Description

Power generation and most processes are dependent on combustion of fuels. The effectiveness of the combustion process has a major influence on plant efficiency, reliability, safety and emissions. This course will improve your understanding of combustion and heat transfer and assist you to obtain the best out of your plant.
This course focuses on recent developments in burner design for process heating applications including boilers, furnaces, refinery operations, power plant and process plant. Particular emphasis is given to combustion aerodynamics and its influence on burner design, low NOx burner design and emission reduction techniques including reburn, SNCR, SCR and NOx storage techniques. These aspects are examined in relation to large natural gas burners, refinery burners, heavy fuel oil burners, flameless combustion, waste and bio-fuel firing, oxy-fuel firing and fluidized bed combustion. Large scale testing and the role of CFD in burner design are also covered.
This course is particularly concerned with improving the energy and environmental performance and design of gas and oil-fired, high-temperature furnaces and boilers. The main aim of the course is to provide greater understanding of the principles and practices associated with efficient design and operation of this type of plant. Lectures will be presented initially on the appropriate fundamental and practical aspects of combustion and heat transfer which are necessary to provide an understanding of the thermal behaviour of fuel-fired furnaces and boilers. Recent concerns on the harmful effects of global climate change have highlighted the need for energy conservation so that efficient burner operation is a major feature of the course. It is also necessary to minimise pollutant emissions (particularly NOx) from combustion processes so that this topic is covered in the presentations. Furnace design and control is still often based on tradition and experience despite the recent development of theoretical and experimental techniques which can assist in the prediction of furnace performance. Consequently, furnace modelling is a further major theme of the course.
Further, the course will provide a comprehensive insight into understanding the safety functions involved with ensuring a safe combustion process in boilers, furnaces, heaters and other fired process units. The concepts of Safety-Instrumented Burner Management Systems (SI-BMS) will be presented as the methodology to design a BMS to be compliant with latest codes and standards including NFPA 85, NFPA 86, FM 7605, ANSI/ISA 84, and IEC 61508, API 556, API 14C & BLRBAC.
link to course overview PDF

TRAINING METHODOLOGY

This interactive training course includes the following training methodologies as a percentage of the total tuition hours

Lectures
Workshops & Work Presentations
Case Studies & Practical Exercises
Videos, Software & Simulators

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

VIRTUAL TRAINING (IF APPLICABLE)

If this course is delivered online as a Virtual Training, the following limitations will be applicable

Certificates: Only soft copy certificates will be issued to participants through Haward’s Portal. This includes Wallet Card Certificates if applicable
Training Materials: Only soft copy Training Materials (PDF format) will be issued to participant through the Virtual Training Platform
Training Methodology: 80% of the program will be theory and 20% will be practical sessions, exercises, case studies, simulators or videos
Training Program: The training will be for 4 hours per day starting at 09:30 and ending at 13:30
H-STK Smart Training Kit: Not Applicable
Hands-on Practical Workshops: Not Applicable
Site Visit: Not Applicable
Simulators: Only software simulators will be used in the virtual courses. Hardware simulators are not applicable and will not be used in Virtual Training

RELATED COURSES

Humidity Control in Buildings (Tips & Traps, Real World Problems & Solutions), Air-to-Air Heat Recovery Fundamentals & Applications and Variable Refrigerant Flow Systems: Design & Applications

ME0773 : Humidity Control in Buildings (Tips & Traps, Real World Problems & Solutions), Air-to-Air Heat Recovery Fundamentals & Applications and Variable Refrigerant Flow Systems: Design & Applications

Pipe Stress Analysis CAESAR II Static

ME0389 : Pipe Stress Analysis CAESAR II Static

Tank & Tank Farms: Design, Installation, Operation, Maintenance & Troubleshooting

ME0595 : Tank & Tank Farms: Design, Installation, Operation, Maintenance & Troubleshooting

Safety Relief Valve Design, Installation, Inspection, Testing & Maintenance (API 520/521/526, API RP 576, NB, ASME I/VIII & ASME PTC 25)

ME0121 : Safety Relief Valve Design, Installation, Inspection, Testing & Maintenance (API 520/521/526, API RP 576, NB, ASME I/VIII & ASME PTC 25)