

COURSE OVERVIEW PE0114-3D Process Troubleshooting and Problem Solving

Course Title

Process Troubleshooting and Problem Solving

Course Date/Venu

December 08-10, 2024/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

(18 PDHs)

AWARI

Course Reference PE0114-3D

Course Duration/Credits Three days/1.8 CEUs/18 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops

Modern industrial processes are large, complex and have a high degree of interaction between both dependent and independent variables. This makes problem solving difficult and leads to the "disappearing problem" syndrome. Problems often disappear without being solved only to reappear again. This course deals with a unique approach of combining cause and effect problem solving thinking with formulation of theoretically correct working hypotheses to provide rapid and effective problem solving techniques for the process industry.

Problem Solving in the process industry is often characterized by either inference based on cause and effect relationships or highly involved theoretical approaches. Neither of these approaches is satisfactory manufacturing modern environment. The in а cause/effect inference approach while being expedient often results in solutions that do not eliminate the problem, but in fact make the problem worse. The more sophisticated highly theoretical approach is rarely expedient enough to satisfy time constraints in a production facility. Thus one of the most frequent industry requests to the academic world is "give us people that can solve problems".

PE0114-3D - Page 1 of 8 PE0114-3D-12-24|Rev.778|13 July 2024

This course presents an approach that emphasizes the classical problem solving approach (defining the sequence of events) with the addition of the steps of formulating a theoretically correct working hypothesis, providing a means to test the hypothesis, and providing a foolproof means to eliminate the problem. The initial part of the course focuses on defining the problem that must be solved and obtaining the location, time and quantity based specifications of the problem. The initial part of the course is suitable for all engineering disciplines as well as non-engineers.

The second part of the course deals with the utilization of chemical engineering fundamentals to develop a technically correct working hypothesis that is the key to successful problem solving. The primary emphasis is on pragmatic calculation techniques that are theoretically correct. These techniques have been developed by the course Instructor in 30+ years of industrial experience. Using these techniques, theoretically correct working hypotheses can be developed in an expedient fashion.

The course includes both sample problems as well as problem working sessions to allow the participants to develop confidence with the approach.

The attendees are encouraged to bring real problems that they are working to use in discussions on the last day of the course. These problems should be of a non-confidential nature that can be discussed without violation of any confidentiality restrictions.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on process plant troubleshooting and engineering problem solving
- Enumerate the components of plant problem solving as well as the various troubleshooting techniques on engineering problem solving by familiarizing the potential sources
- Specify the limitations to plant problem solving through sources of historical data and explain the daily monitoring system guidelines by setting trigger points
- Apply the methods of risk analysis particularly HAZOP and MSDS in process plant troubleshooting and practice the process of engineering problem solving through sample problems in troubleshooting
- Discuss the scope of applied economics including other valuation forms & methods, and review the guidelines for problem solving temperature, pressure, and level
- Employ the simplified approach in solving compressor problems, distillation, plates & tray stability, discuss clearly the elements of measurements & verifications and carryout sample exercise on kinetics, flow, mechanical and designs
- Recognize the attributes of equivalent piping lengths, commercial correlations and fluids by means of practical exercises
- Discuss the importance of two phase flow including its attributes and applications and analyze the characteristics of controllers, feedback, feedforward and cascade controls used in process control

PE0114-3D - Page 2 of 8

- Recognize process control and optimization, process analyzers, distillation multiple control, volume control, condenser control and control project drawback
- Employ heat transfer and various troubleshooting techniques and applications used in process plant
- Implement the procedures on distillation column packing and identify the different forms of hazards to equip them with the QRA procedures and demonstration
- Carryout proper methodology of MSDS and discuss if the needed information is good enough or incomplete

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides a complete and up-to-date overview of the process plant troubleshooting techniques and procedures used to solve engineering problems. Process engineers, plant managers, team leaders, section heads, plant supervisors and other technical staff will definitely benefit from the engineering problem solving approach of the course.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 3,750 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

PE0114-3D - Page 3 of 8 PE0114-3D-12-24|Rev.778|13 July 2024

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:-

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **1.8 CEUs** (Continuing Education Units) or **18 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

• BAC

**

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Mervyn Frampton is a Senior Process Engineer with over 30 years of industrial experience within the Oil & Gas, Refinery, Petrochemical and Utilities industries. His expertise lies extensively in the areas of Process Troubleshooting, Distillation Towers, Fundamentals of Distillation for Engineers, Distillation Operation and Troubleshooting, Advanced Distillation Troubleshooting, Distillation Technology, Vacuum Distillation, Distillation Column Operation & Control, Oil Movement Storage & Troubleshooting,

Process Equipment Design, Applied Process Engineering Elements, Process Plant Optimization, Revamping & Debottlenecking, Process Plant Troubleshooting & Engineering Problem Solving, Process Plant Monitoring, Catalyst Selection & Production Optimization, Operations Abnormalities & Plant Upset, Process Plant Start-up & Commissioning, Clean Fuel Technology & Standards, Flare, Blowdown & Pressure Relief Systems, Oil & Gas Field Commissioning Techniques, Pressure Vessel Operation, Gas Processing, Chemical Engineering, Process Reactors Start-Up & Shutdown, Gasoline Blending for Refineries, Urea Manufacturing Process Technology, Continuous Catalytic Reformer (CCR), De-Sulfurization Technology, Advanced Operational & Troubleshooting Principles of Operations Planning, Rotating Equipment Maintenance & Skills. Troubleshooting, Hazardous Waste Management & Pollution Prevention, Heat Exchangers & Fired Heaters Operation & Troubleshooting, Energy Conservation Skills, Catalyst Technology, Refinery & Process Industry, Chemical Analysis, Process Plant, Commissioning & Start-Up, Alkylation, Hydrogenation, Dehydrogenation, Isomerization, Hydrocracking & De-Alkylation, Fluidized Catalytic Cracking, Catalytic Hydrodesulphuriser, Kerosene Hydrotreater, Thermal Cracker, Catalytic Reforming, Polymerization, Polyethylene, Polypropylene, Pilot Water Treatment Plant, Gas Cooling, Cooling Water Systems, Effluent Systems, Material Handling Systems, Gasifier, Gasification, Coal Feeder System, Sulphur Extraction Plant, Crude Distillation Unit, Acid Plant Revamp and Crude Pumping. Further, he is also well-versed in HSE Leadership, Project and Programme Management, Project Coordination, Project Cost & Schedule Monitoring, Control & Analysis, Team Building, Relationship Management, Quality Management, Performance Reporting, Project Change Control, Commercial Awareness and Risk Management.

During his career life, Mr. Frampton held significant positions as the **Site Engineering Manager**, **Senior Project Manager**, **Process Engineering Manager**, **Project Engineering Manager**, **Construction Manager**, **Site Manager**, **Area Manager**, **Procurement Manager**, **Factory Manager**, **Technical Services Manager**, **Senior Project Engineer**, **Process Engineer**, **Project Engineer**, **Assistant Project Manager**, **Handover Coordinator** and **Engineering Coordinator** from various international companies such as the **Fluor Daniel**, **KBR** South Africa, **ESKOM**, MEGAWATT PARK, CHEMEPIC, PDPS, CAKASA, **Worley Parsons**, Lurgi South Africa, **Sasol**, **Foster Wheeler**, **Bosch** & **Associates**, **BCG** Engineering Contractors, Fina Refinery, Sapref Refinery, Secunda Engine Refinery just to name a few.

Mr. Frampton has a **Bachelor's degree** in **Industrial Chemistry** from **The City University** in **London**. Further, he is a **Certified Instructor/Trainer**, a **Certified Internal Verifier/Trainer/Assessor** by the **Institute of Leadership & Management (ILM)** and has delivered numerous trainings, courses, workshops, conferences and seminars internationally.

PE0114-3D - Page 5 of 8 PE0114-3D-12-24|Rev.778|13 July 2024

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Sunday, 08 th of December 2024
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0845	Troubleshooting
0845 - 0900	Definition, Potential Sources
0900 - 0915	Engineering Problem Solving
0915 - 0930	Course Approach
0930 - 0945	Break
0945 - 1000	Components of Plant Problem Solving
1000 - 1015	Limitations to Plant Problem Solving
1015 - 1030	Sources of Historical Data
1030 - 1045	Daily Monitoring System Guidelines
1045 - 1100	Setting Trigger Points
1100 – 1130	Disciplined Learned Problem Solving Approach
1130 - 1145	Step 1 to Step 6 – Considerations
1145 – 1215	Risk Analysis – HAZOP – MSDS
1215 – 1230	Break
1230 - 1245	Troubleshooting Manual: Sample Problems
1245 - 1300	Applied Economics
1300 - 1315	Valuation Principles & Methods
1315 - 1345	Other Valuation Principle & Methods
1345 – 1420	Compressor – Compressor Problems – Simplified Approach
1420 - 1430	Recap
1430	Lunch & End of Day One

Day 2:	Monday, 09 th of December 2024
0730 - 0800	Distillation, Plates, Tray Stability
0800 - 0830	Guidelines for Problem Solving Temperature, Pressure, Level
0830 - 0845	Measurements, Verification
0845 - 0900	Sample Exercise Kinetics, Flow, Mechanical, Design
0900 - 0930	Fluid Overview – Basic Principles
0930 - 0945	Break
0945 – 1000	Fluid Overview – Head Definition
1000 - 1015	Equivalent Piping Lengths
1015 - 1030	Commercial Correlations
1030 - 1045	Practical Exercises
1045 – 1100	Two Phase Flow/Theory & Applications
1100 – 1130	Practical Exercises
1130 – 1145	Process Control – Introduction; PID
1145 – 1215	Controllers, Feedback, Feedforward & Cascade Controls
1215 – 1230	Break

PE0114-3D - Page 6 of 8

1230 - 1300	Advanced Control; Multi-loop
1300 - 1330	Controllers; Process Control & Optimization
1330 - 1400	On Line Optimization; Process Analyzers
1400 – 1420	Distillation Multiple Control; Volume Control
1420 - 1430	Recap
1430	Lunch & End of Day Two

Day 3:	Tuesday, 10 th of December 2024
0730 - 0800	Condenser Control, Practical Considerations, Advanced
0800 - 0830	Control Project Drawback
0830 - 0845	Heat Transfer Overview
0845 - 0900	Troubleshooting Techniques/Applications
0900 - 0930	Practical Exercises
0930 - 0945	Break
0945 – 1000	Distillation Column Packing
1000 - 1015	Practical Exercises
1015 – 1030	Hazards
1030 - 1045	Demonstration
1045 – 1100	QRA
1045 - 1100	"Ishikawa" Diagrams • Exercises
1100 – 1130	MSDS
1130 – 1145	Needed Information, Is it Good Enough?
1145 – 1215	Incomplete?
1215 – 1230	Break
1230 - 1300	Accidents
1300 - 1330	FLIXBOROUGH ACCIDENT
1330 - 1345	Lessons learned, General Information
1345 – 1400	Course Conclusion
1400 - 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

PE0114-3D - Page 7 of 8

Recretited Former and the second seco

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Mari Nakintu, Tel: +971 230 91 714, Email: mari1@haward.org

PE0114-3D - Page 8 of 8

