

COURSE OVERVIEW DE0338 Concept Selection and Specification of Production Facilities in Field Development Projects

Course Title

Concept Selection and Specification of Production Facilities in Field Development Projects

Course Date/Venue

- Session 1: October 06-10, 2024/Oryx Meeting Room, Doubletree By Hilton Doha-Al Sadd, Doha, Qatar
- Session 2: December 15-19, 2024/The Kooh Al Noor Meeting Room, The H Dubai Hotel, Sheikh Zayed Rd, Trade Centre, Dubai, UAE

CEUS

Course Reference

DE0338

Course Duration/Credits DDUS Five Days days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of Concept Selection and Specification of Production Facilities in Field Development Projects. It covers the phases of a field development project and key components of a field development plan; the decision tree analysis and risk and opportunity assessments; the factors influencing facility design including fluid properties and their impact on facilities; the importance of location and contractual obligations including the operating conditions from wellhead to separation; and the types of separators, separator sizing and design.

Further, the course will also discuss the reasons for stabilization and dehydration, equipment and methodologies; water handling, treatment methods and equipment; the specifications for produced water systems and gas compression systems; the initial gas treatment methods and gas dehydration techniques; the gas sweetening processes and adsorption methods as well as the types of artificial lift systems; and the impact of artificial lift on facilities design.

DE0338 - Page 1 of 8 DE0338-10-24|Rev.03|21 July 2024

During this interactive course, participants will learn the secondary/tertiary production techniques and asset integrity and inherently safe design principles; the principles of asset integrity including the rate, composition, temperature and pressure of design impacts; the design aspects of midstream facilities, performance of production versus midstream facilities and delivering saleable products to the market; and exploring future trends in production facilities design covering technological advancements, sustainability and environmental considerations.

Course Objectives

Upon successful completion of this course, each participant will be able to:-

- Apply and gain a comprehensive knowledge on concept selection and specification of production facilities in field development projects
- How to develop the project framework and decision making strategy
- How the specification of production, processing facilities is influenced by reservoir type, drive mechanism, fluid properties, location and contractual obligations
- Operating conditions that affect the specification of the production facilities from the wellhead through initial separation
- Parameters that affect the design and specification of oil stabilization and dehydration equipment
- The design and specification of produced water systems appropriate for the rate and composition of the produced water to meet the required environmental regulations and/or injection well capacity
- The design and specification of gas handling facilities including compression, dehydration and sweetening
- The impact of artificial lift systems and secondary/tertiary production projects on facilities selection and design
- The principles of asset integrity and inherently safe design given the rate, composition, temperature and pressure of the production stream
- About midstream facilities required downstream of the primary production facility to deliver saleable products to the market and how these facilities are affected by production rates, composition and production facility performance
- Discuss the phases of a field development project and key components of a field development plan
- Carryout decision tree analysis and risk and opportunity assessments
- Identify the factors influencing facility design including fluid properties and their impact on facilities
- Discuss the importance of location and contractual obligations including the operating conditions from wellhead to separation
- Recognize the types of separators, separator sizing and design as well as explain the reasons for stabilization and dehydration, equipment and methodologies

DE0338 - Page 2 of 8

DE0338-10-24|Rev.03|21 July 2024

- Apply water handling, treatment methods and equipment and discuss specifications for produced water systems
- Recognize gas compression systems and apply initial gas treatment methods and gas dehydration techniques
- Illustrate gas sweetening processes and adsorption methods as well as identify the types of artificial lift systems and the impact of artificial lift on facilities design
- Employ secondary/tertiary production techniques and discuss asset integrity and inherently safe design principles
- Explain the principles of asset integrity including the design impacts of rate, composition, temperature and pressure
- Describe the design aspects of midstream facilities, performance of production versus midstream facilities and delivering saleable products to the market
- Explore future trends in production facilities design covering technological advancements, sustainability and environmental considerations

Who Should Attend

This course provides an overview of all significant aspects and considerations of concept selection and specification of production facilities in field development projects for those working on field development teams, as well as those who need to better understand how surface facilities are selected and how subsurface characteristics affect facility design and specification.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

- 30% Lectures
- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

DE0338 - Page 3 of 8 DE0338-10-24|Rev.03|21 July 2024

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

• *** * BAC

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Course Fee

Doha	US\$ 8,500 per Delegate. This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Dubai	US\$ 8,000 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

DE0338 - Page 4 of 8

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Konstantin Zorbalas, MSc, BSc, is a Senior Petroleum Engineer & Well Completions Specialist with over 25 years of offshore and onshore experience in the Oil & Gas, Refinery & Petrochemical industries. His wide expertise includes Workovers & Completions, Petroleum Risk & Decision Analysis, Acidizing Application in Sandstone & Carbonate, Well Testing Analysis, Stimulation Operations, Reserves Evaluation, Reservoir Fluid

Properties, Reservoir Engineering & Simulation Studies, Reservoir Monitoring, Artificial Lift Design, Gas Operations, Workover/Remedial Operations & Heavy Oil Technology, Applied Water Technology, Oil & Gas Production, X-mas Tree & Wellhead Operations & Testing, Artificial Lift Systems (Gas Lift, ESP, and Rod Pumping), Well Cementing, Production Optimization, Well Completion Design, Sand Control, PLT Correlation, Slickline Operations, Acid Stimulation, Well testing, Production Logging, Project Evaluation & Economic Analysis. Further, he is actively involved in **Project Management** with special emphasis in production technology and field optimization, performing conceptual studies, economic analysis with risk assessment and field development planning. He is currently the Senior Petroleum Engineer & Consultant of National Oil Company wherein he is involved in the mega-mature fields in the Arabian Gulf, predominantly carbonate reservoirs; designing the acid stimulation treatments with post-drilling rigless operations; utilizing CT with tractors and DTS systems; and he is responsible for gas production and preparing for reservoir engineering and simulation studies, well testing activities, field and reservoir monitoring, production logging and optimization and well completion design.

During his career life, Mr. Zorbalas worked as a Senior Production Engineer, Well Completion Specialist, Production Manager, Project Manager, Technical Manager, Technical Supervisor & Contracts Manager, Production Engineer, Production Supervisor, Production Technologist, Technical Specialist, Business Development Analyst, Field Production Engineer and Field Engineer. He worked for many worldclass oil/gas companies such as ZADCO, ADMA-OPCO, Oilfield International Ltd, Burlington Resources (later acquired by Conoco Phillips), MOBIL E&P, Saudi Aramco, Pluspetrol E&P SA, Wintershall, Taylor Energy, Schlumberger, Rowan Drilling and Yukos EP where he was in-charge of the design and technical analysis of a gas plant with capacity 1.8 billion m3/yr gas. His achievements include boosting oil production 17.2% per year since 1999 using ESP and Gas Lift systems.

Mr. Zorbalas has Master and Bachelor degrees in Petroleum Engineering from the Mississippi State University, USA. Further, he is an SPE Certified Petroleum Engineer, Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM), an active member of the Society of Petroleum Engineers (SPE) and has numerous scientific and technical publications and delivered innumerable training courses, seminars and workshops worldwide.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

DE0338 - Page 5 of 8

DE0338-10-24|Rev.03|21 July 2024

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Introduction to Field Development Projects
	Overview of the Upstream Sector • Phases of a Field Development Project
0930 - 0945	Break
0945 – 1100	How to Develop the Project Framework
	Key Components of a Field Development Plan • Setting Objectives & Goals
1100 1200	Decision Making Strategy in Projects
1100 - 1200	Decision Tree Analysis • Risk & Opportunity Assessments
1200 - 1245	Factors Influencing Facility Design
1200 - 1243	Reservoir Type & Its Importance • Drive Mechanisms
1245 – 1300	Break
1300 - 1345	Fluid Properties & their Impact on Facilities
	PVT Analysis • Phase Behavior
1345 - 1415	Importance of Location & Contractual Obligations
	Accessibility & Logistical Challenges • Contractual Constraints & Flexibility
1415 – 1430	Recap
1430	Lunch & End of Day One

Day 2

0730 – 0930	Operating Conditions from Wellhead to Separation Flow Assurance • Wellhead Controls & Chokes
0930 - 0945	Break
0945 – 1100	Primary Production Facilities: Initial Separation
	<i>Types of Separators • Separator Sizing & Design</i>
1100 – 1200	Oil Stabilization & Dehydration Equipment
	Reasons for Stabilization Dehydration • Equipment & Methodologies
1200 - 1230	Design of Produced Water Systems
	Overview of Water Handling • Treatment Methods & Equipment
1230 - 1245	Break
1245 - 1345	Specifications for Produced Water Systems
	Meeting Environmental Regulations • Injection Well Requirements
1345 - 1415	Gas Handling: Basics
	Gas Compression Systems • Initial Gas Treatment Methods
1415 – 1430	Recap
1430	Lunch & End of Day Two

DE0338 - Page 6 of 8

Day 3

0730 - 0930	Gas Dehydration Techniques
	Glycol Dehydration Units • Membrane Systems
0930 - 0945	Break
0945 – 1100	Gas Sweetening Processes
	Amine Systems • Adsorption Methods
1100 – 1200	Introduction to Artificial Lift Systems
	Keasons & Scenarios for Artificial Lift • Types of Artificial Lift Systems
1200 - 1230	Impact of Artificial Lift on Facilities Design
1220 1245	Surjuce Equipment Implications • Power Kequirements
1230 - 1243	DIEUK Sagan dam / Tantiam : Duaduation Techniques
1245 - 1345	Water Flooding Cas Injection • Impact on Eacility Decion
	Assat Integrity & Inherently Safe Design Dringinlas
1345 - 1415	Importance of Safety in Design • Recognizing & Mitigating Hazards
1415 - 1430	Recan
1430	Lunch & End of Day Three
Day /	
∠ay 4	Principles of Asset Integrity in Detail
0730 – 0930	Corrosion Management • Inspection & Maintenance Planning
0930 - 0945	Break
	Rate, Composition, Temperature & Pressure: Design Impacts
0945 – 1100	Material Selection • Equipment Rating & Safety Factors
4400 4000	Introduction to Midstream Facilities
1100 – 1200	<i>Overview of the Midstream Sector</i> • <i>Relationship with Upstream</i>
1000 1000	Design Aspects of Midstream Facilities
1200 - 1230	Flow Stabilization • Storage & Transportation Considerations
1230 - 1245	Break
1715 1215	Performance of Production vs. Midstream Facilities
1243 - 1343	Efficiency & Optimization • Matching Upstream & Midstream Operations
13/15 1/15	Delivering Saleable Products to the Market
1545 - 1415	Quality Standards • Transportation Methods: Pipeline, Truck, Rail & Shipping
1415 – 1430	Recap
1430	Lunch & End of Day Four
Day 5	
0730 - 0930	Case Study: From Reservoir to Market: Integrating Topics from Days 1-4 into
0700 - 0000	a Holistic Field Development Plan
0930 - 0945	Break
0945 - 1145	Group Workshop: Designing a Facility Based on Provided Data: Applying
	Concepts in a Practical Scenario
1145 – 1230	Group Workshop: Designing a Facility Based on Provided Data: Applying
1000 1015	Concepts in a Practical Scenario (cont'd)
1230 – 1245	
1245 – 1345	Exploring Future Trends in Production Facilities Design
1245 1400	1 echnological Advancements • Sustainability & Environmental Considerations
1345 - 1400	Course Conclusion
1400 - 1415	PUSI-IESI
1415 - 1430	Presentation of Course Certificates
1430	Lunch & Ena of Course

DE0338-10-24|Rev.03|21 July 2024

iosh

IAC

Practical Sessions

This practical and highly-interactive course includes the following real-life case studies:-

Course Coordinator Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

DE0338 - Page 8 of 8 DE0338-10-24|Rev.03|21 July 2024

