

COURSE OVERVIEW ME0100-4D

<u>Valve Technology</u>

Selection, Installation, Upgrading, Inspection, Maintenance, Repair & Troubleshooting

Course Title

Valve Technology: Selection, Installation, Upgrading, Inspection, Maintenance, Repair & Troubleshooting

24 PDHs)

Course Reference

Course Duration/Credits

Four days/2.4 CEUs/24 PDHs

Course Date/Venue

Obul 3C Date	VCIIUC							
Session(s)	Date	Venue						
1	August 19-22, 2024	Club B Meeting Room, Ramada Plaza by Wyndham Istanbul City Center, Istanbul, Turkey						
2	November 25-28, 2024	Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE						

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt in the class will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Valve Selection, Installation & Maintenance. It covers the lubrication fitting and categorizing valves based on their function; the valve symbols, hydraulic pneumatic valves, motor, cylinders and directional control valves; the solenoid valve, typical valve and other valve designs; the various types of pressure control valves, check valves and control valve; and the characteristics of valve and control valve selection and sizing.

Further, the course will also discuss the control valve performance, process considerations, actuators and positioners; the fundamentals of pressure relief devices including the advantages and disadvantages of conventional valve and balanced bellows valve; the piston type pilot operated safety relief valve; the wetted area, heat absorption, vaporization rate and relief vent area; the causes of chatter, staggered PSV's and valve critical inspection, maintenance and testing; and the PRV repair and non-destructive testing including disc dismantling, assembly and disassembly.

ME0100-4D - Page 1 of 11

ME0100-4D-08-24|Rev.437|13 July 2024

During this interactive course, participants will learn the lapping procedure, grinding, assembly, valve sealing, installation, maintenance, troubleshooting and galling; the common valve problems, potential causes and water hammer; the valve testing and sealing, PRV adjustments, digital communications, cryogenic valves selection and proof testing and diagnostics; the characteristics of steam trap; and the online testing, calculation method, measurement method and visual inspection.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on valve selection, installation, upgrading, inspection, maintenance, repair and troubleshooting
- Identify lubrication fitting and categorize valves based on their function
- Discuss valve symbols, hydraulic pneumatic valves, motor, cylinders and directional control valves
- Recognize solenoid valve, typical valve and other valve designs
- Identify the various types of pressure control valves, check valves and control valve
- Describe the characteristics of valve and apply control valve selection and sizing
- Discuss control valve performance, process considerations, actuators and positioners
- Explain the fundamentals of pressure relief devices including the advantages and disadvantages of conventional valve and balanced bellows valve
- Recognize the piston type pilot operated safety relief valve as well as determine wetted area, heat absorption, vaporization rate and relief vent area
- Discuss the causes of chatter and staggered PSV's and apply valve critical inspection, maintenance and testing
- Carryout PRV repair and non-destructive testing including disc dismantling, assembly and disassembly
- Apply lapping procedure, grinding and assembly as well as valve sealing, installation, maintenance, troubleshooting and galling
- Identify the common valve problems, potential causes and water hammer
- Employ valve testing and sealing, PRV adjustments, digital communications, cryogenic valves selection and proof testing and diagnostics
- Discuss the characteristics of steam trap and apply online testing, calculation method, measurement method and visual inspection

Who Should Attend

This course provides an overview of all significant aspects and considerations of valve selection, installation, upgrading, inspection, maintenance, repair and troubleshooting for maintenance engineers, application engineers, inspection engineers, mechanical engineers, under-development engineers, electrical/electronics engineers, control systems and instrumentation engineers, production engineers, wellhead and drilling engineers and other technical staff.

ME0100-4D - Page 2 of 11

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:-

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **2.4 CEUs** (Continuing Education Units) or **24 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

• **BAC**

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

ME0100-4D - Page 3 of 11

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Craig Nilsen, CMRP, CRCMP, RCM3, is a Senior Mechanical & Maintenance & Reliability Engineer with over 30 years of extensive experience within the Manual Valves, Pressure Control Valves, Control Valve Selection, Valve Testing & Sealing, Oil & Gas, Refinery and Petrochemical industries. His wide expertise includes Maintenance Planning & Scheduling, Maintenance Planning Process, Maintenance Shutdown & Turnaround, Maintenance Audit Best Practices. Maintenance & Reliability Management, Reliability Engineering, Maintenance & Reliability Best Practices, Reliability, Availability & Maintainability (RAM), Root Cause Analysis, Maintenance Process, Reliability-Centered Maintenance (RCM), Reliability Engineering Analysis (RE), Root Cause Analysis (RCA), Asset Integrity Management (AIM), Reactive & Proactive Maintenance, Maintenance Process, Work Task Prioritization, Condition Monitoring, Mechanical Engineering, Mechanical Manufacturing Engineering, Mechanical Engineering Design, Electro Technology, Maintenance Planning, Parts Planning & Inventory Management, Computerized Maintenance Spare Management Systems (CMMS), Process Plant Shutdown & Turnaround, Maintenance Optimization & Best Practices, Reliability Centered Maintenance Principles & Application, Efficient Shutdowns, Turnaround & Outages, Process Plant Shutdown, Turnaround & Troubleshooting, Shutdown & Turnaround Management, Optimizing Equipment Maintenance & Replacement Decisions, Maintenance Management & Cost Control, Preventive & Predictive Maintenance, Effective Reliability Maintenance & Superior Maintenance Strategies, Integrity & Asset Management, Total Plant Reliability Maintenance, Vibration Measurement, Spare Parts & Materials Management, **Mechanical & Rotating Equipment** Troubleshooting & Maintenance, Rotating Equipment Reliability Optimization, Laser Alignment, Thermography, Risk Assessment, Legal Liability, Construction Regulations, Machine Vibration Analysis, Bag Filters Operation & Troubleshooting, Blower & Fan, Pumps, Valves, Bearings & Lubrication, Mechanical Seals, Mechanical Equipment Maintenance, Gearboxes, Shaft Alignment, Rotating Equipment, Preventive & Predictive Maintenance, Spare Management and Network Analysis.

During his career life, Mr. Nilsen gained his practical and field experience through his various significant positions and dedication as the Maintenance Engineer, Repair Shop Supervisor, Maintenance & Reliability Specialist, Maintenance Planner/Reliability Specialist, Senior Maintenance Planner/Condition Monitoring Specialist, Supply Chain Maintenance Planner, Technical Advisor, Senior Trainer/Lecturer, RCM3 Senior Consultant/Practitioner and Fitter & Turner for Algorax (Pty) Limited.

Mr. Nilsen has a National Higher Diploma in Mechanical Engineering. Further, he is a Certified Instructor/Trainer, a Certified Maintenance and Reliability Professional (CMRP) from the Society of Maintenance & Reliability Professionals (SMRP), a Certified Reliability Centered Management Professional (CRCMP) from the International Organization of RCM Professionals (IORCMP), a Certified Reliability Centered Maintenance 3 (RCM3) Professional from Aladon, USA and a Qualified Fitter & Turner. Moreover, he is an active member of the Society of Maintenance and Reliability Professionals (SMRP) and the South African Asset Management Association (SAMA). He has further delivered numerous trainings, courses, seminars, workshops and conferences internationally.

ME0100-4D - Page 4 of 11

Course Fee

Istanbul	US\$ 5,000 per Delegate + VAT . This rate includes Participants Pack (Folder, Manual, Hand-outs, etc.), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Dubai	US\$ 4,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations 30% Hands-on Practical Exercises & Case Studies 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0900	<i>Lubrication Fitting Identification</i> <i>Bearing Lubrication Fitting</i> • <i>Packing Injection Fitting</i> • <i>Drain Port/Cavity</i> <i>Lube Port</i> • <i>Seal Sealant Injection Port</i>
0900 - 0930	Valves can be Broadly Categorized Based on their Function asStop (Isolation) Valves• Regulating Valves• Back-Flow Prevention Valves• Pressure-Relief Valves
0930 - 0945	Break
0945 – 1015	Working Fluid Liquid • Gas • Solids
1015 – 1100	Manual ValvesClassification of Valve on their Operating WayValve SymbolsRotatingValvesPlug ValvesBall ValvesButterfly ValvesGlove ValvesGate ValvesDiaphragm Valve ComponentsDiaphragm Valve ActionFlexible ValvesVaveFlexible ValvesPinch ValvesSolenoid ValveFoot ValveVaveCharacterizationVaveVaveVaveVave

ME0100-4D - Page 5 of 11

	Hydraulic Pneumatic Valves					
1100 – 1130	Fixed Displacement Hydraulic Pump • Variable Displacement Hydraulic					
	Ритр					
1130 1200	Motors					
1130 - 1200	Pneumatic Motor • Rotary Actuator					
1200 1220	Cylinders					
1200 - 1230	Single Acting Cylinder • Double Acting Cylinders					
1230 - 1245	Break					
	Cylinders with Cushions					
1245 - 1315	Single Fixed Cushion • Double Fixed Cushion • Single Adjustable Cushion •					
	Double Adjustable Cushion					
	Directional Control Valves					
1315 – 1345	Electro-Hydraulic Servo Valve • Manual Control • Electrical Control •					
	Flow Control Valve					
	What is a Coil & How Does it Work?					
1345 - 1420	How Does a Solenoid Valve Work • Style • Type • Design • Operators					
	Actuator Control					
	Recap					
1/20 1/30	Using this Course Overview, the Instructor(s) will Brief Participants about the					
1420 - 1430	Topics that were Discussed Today and Advise Them of the Topics to be Discussed					
	Tomorrow					
1430	Lunch & End of Day One					

Dav 2

Day 2	
0730 – 0800	Typical Valve Poppet Valves • Spool Valves • Spool Types • Disc Seals
0800 - 0830	Other Valve Designs Pressure Switches • Logic "or"/"and" Shuttle Valve • Flow Regulator • Banjo Flow Regulator • Quick Exhaust Valve • Solenoid Valves • Principle of Operation • What Causes Solenoids to Fail
0830 - 0900	Pressure Control Valves Types of Pressure Control Valves • Pressure Relief Valve (PRV) • Complete Circuit • Direct Relief Valve Performance • Pilot Operated Relief Valve • Unloading Valve • Sequence Valve • Pressure-Reducing Valve • Counterbalance Valve • Safety Valve • How Failures Occur in Hydraulics Systems • Root Cause of Hydraulic Failures • Known Best Maintenance Practices "Hydraulics"
0900 - 0930	<i>Check Valves</i> Operational Detail • The Main Types of Check Valves • Selection Criteria
0930 - 0945	Break
0945 – 1030	Control Valve Types Rotary Valves • Butterfly Valves • Eccentric Disk Valves • Bidirectional Tightness • Eccentric Rotary Plug Valves • Ball Valves • Plug Valves • Linear Valves • Globe Valves • Cage Valves
1030 - 1100	<i>Control Valve Theory</i> <i>Definition of a Control Valve</i> • <i>Types of Energy</i> • <i>What Happens Inside a</i> <i>Control Valve</i> • <i>Choked Flow</i> • <i>Cavitation</i> • <i>Flashing</i>
1100 – 1130	Characteristics & TrimValve Characteristics •Application Examples •Cavitation Control •Anti - Cavitation Trim •High Pressure Drop Applications •Low NoiseTrim •Diffuser

ME0100-4D - Page 6 of 11

1130 - 1200	Control Valve SelectionDecision Criteria • Materials of Construction • Valve Characteristics •Actuator Considerations • Price Comparison • Selection Guidelines •Application Comparisons • Computer Sizing Programme
1200 - 1230	Control Valve SizingGeneral • Valve Coefficient (CV) • ISA Sizing Equation • SimplifiedSizing Equation • Comparison of Valve Types • Turndown versusRangeability
1230 – 1245	Break
1245 - 1315	Installed Gain as a Control Valve Sizing CriteriaControl Valve CharacteristicsInherent CharacteristicInstalledCharacteristic & GainSelecting the Right PumpInstalled
1315 - 1345	Control Valve PerformanceProcess Variability• Dead Time• Actuator / Positioner Design• ValveResponse Time• Valve Type & Characterisation• Valve Sizing
1345 - 1420	Process Considerations End Connections • Face to Face Criteria • Materials Selection • Modes of Failure • Leakage Rates • International Standards
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

Dav 3

2	A -to-to-to-to-Condition
0730 - 0800	Actuators & Positioners Tunes of Actuators • Linear Actuators • Rotary Actuators • Actuator Forces
0700 0000	Positioners • Fail Safe Systems
	Accessories
0800 0830	Auxiliary Handwheels • Pressure Regulators • Lock-Up Valves • ON-OFF
0800 - 0850	Valve • Position Transmitters • Volume Booster • Limit Switches •
	Solenoid Valves
	Fundamentals of Pressure Relief Devices
	What is the Hazard? • What are Relief Events? • Potential Lines of Defense
	• What is a Relief System? • Why Use a Relief System? • Pressure Relief
0830 - 0930	Devices • Pressure Terminology • Superimposed Back Pressure • Built-Up
	Back Pressure • Code Requirements • Relief Design Methodology • Locating
	Reliefs – Where? • Choosing Relief Types • General Types of Safety Relief
	Valve Design
	Advantages/Disadvantages Conventional Valve • Balanced Bellows Spring
	Loaded Safety Relief Valve • Advantages/Disadvantages Balanced Bellows
	Valve
0930 - 0945	Break
	Valve Critical Inspections
	Valve Maintenance • What is Preventative Maintenance? • When to Use
	Preventative Maintenance & Predictive Maintenance • Objectives of an
0945 - 1015	Inspection Job • PRV Repair Flow Chart • Inspector's Role • Measurement
0010 1010	& Test Equipment • Inspection Methods • PRV Spindle Inspection Points •
	Disk & Nozzle Inspection • PRV Guide & Disc Holder • PRV Spring
	Inspection Points • Spring Rate • 900 Series Disc Criteria Data Sheet •
	6000 Series • Sample Traveler • Critical Inspection

ME0100-4D - Page 7 of 11

	PRV Repair & Non-Destructive Examination
1015 1015	Pressure Relief Value Repair • Critical Parts • Nozzle & Disc • Spring •
1015 – 1045	Adjusting Ring • Parts Providing Alignment • Lifting Devices • Safety
	Valve to Repair
	Check Tools
	Designated Use • V-Block • Dismantling Instructions for Type 526 API •
	Disc Disassembly with Sealing Plate • Removing the Studs from the Body •
1045 - 1115	Execution • Measures & Facing Profile • Surface Quality • Nondestructive
	Examination • Preparation for Value Assembly • Assembly of Type 526 •
	Assembly of Disc Assembly • Assembly of the Adjusting Screw • Adjusting
	the Set Pressure • Body and Bonnet Connection
	Lapping, Grinding & Assembly
	Surface Quality • Lapping Objectives • Two Critical Elements of PRV
	Operation • Purpose of Lapping • Balance of Lapping • Ring Laps •
	Lapping Materials • Cleanliness • Lap Selection • Nozzle Seat Width •
1115 - 1145	PRV Lapping Procedure • Glass Plate • Technical Requirements • Technical
1110 1140	Illustration • Monocrystalline Diamond Powder • Designated Use •
	Technical Requirements • Technical Illustration • Re-Lapping with a Glass
	Plate • Re-Lapping the Nozzle and the Disc • PRV Bearing Points •
	Assembly Objectives • Assemblers Responsibility • Assembly Operation •
	Sample Traveler
	Valve Sealing Solutions
	National Emission Standards for Equipment Leaks • Value Sealing Solutions •
	Non-Aspestos Value Sealing System • Electric Power Research Institute (EPRI) •
1145 - 1230	Causes of value Leakage • Volume Loss • Value Design • Packing Material • Pressure & Temperature • Temperature Cucling • Value Actuation
	Horizontally Mounted Values • Value Condition • Pitting • Maintenance
	Practices • Gland Packing • Second Service Category • Liveload • Balancing
	Control and Low Emissions
1230 - 1245	Break
	Operational Issues
1245 - 1315	General Review Installation Maintenance Troubleshooting
	Corrosion • Galling
	Common Valve Problems
1315 - 1345	Water Hammer Effects • High Noise Levels • Noise Attenuation • Fugitive
	Emissions
1015 1100	Control Valve Failures Potential Causes
1345 - 1420	Physical Failures \bullet Velocity Problems \bullet Erosion by Cavitation \bullet Erosion By
	Abrasion • Noise • Vibration
	Kecap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics inui were Discusseu Touny und Advise Them of the Topics to be Discussed
1420	Tomorrow
1430	Lunch & End of Day Three

ME0100-4D - Page 8 of 11

Day 4

	Water Hammer
0730 0800	Where Water Hammer Occurs
	Hydraulic Shock • Thermal Shock • Differential Shock • Unsteady Flow in
0750 - 0800	Pipes • Water Hammer Phenomenon in Pipelines • Some Typical Damages •
	Propagation of Water Hammer Pressure Wave • Analysis of Water Hammer
	Phenomenon
	Valve Testing & Sealing
	Testing Objectives • ASME Requirements • PRV Testing & Adjustments •
	Testing & Sealing • Definition of Set Pressure • Liquid Test – Definition of
	Open • PRV Set Pressure on Liquid • Above Opening Pressure • Maximum
	Overpressure 110% of Set Pressure • Air Test PRV • Reaction Force •
0800 - 0845	ASME Code Requirement for PRV Seat Tightness Testing • API 527 • PRV
	Adjustments • Two Ring/One Ring Design Ring Setting Chart • Sealing
	Adjustments • Sample Traveler • Field Testing Advice • Auxiliary Lifting
	Devices
	On Site Safety Valves Testing Schedule • Safety Valves Test Schedule for
	Boilers
0045 0020	Field Communications
0845 - 0930	Analogue Signals • Digital Communications • Fieldbus Technologies
0930 - 0945	Break
0945 - 1015	Cryogenic Valves
	Selection of Cryogenic Valves • Material Considerations • Standards &
	Testing
	Fire Safe Valves
1015 – 1045	Requirements • Sealing & Leakage • Design • Standards & Testing •
	Examples
1045 - 1115	Strainers
1010 1110	Y-Type Strainers • Basket Type Strainers • Strainer Screens
	Proof Testing & Diagnostics
1115 – 1145	Safety Instrumented Systems (An Overview) • Proof Testing • Partial Valve
	Stroking • Diagnostics
	Steam Traps
	Characteristics of Steam • Steam Trap • Typical Steam Generation-
	Distribution-Recovery Diagram • Mechanical Steam Traps • Inverted Bucket
	Steam Traps • Float & Thermostatic Steam Traps • Thermostatic Steam Traps
1145 – 1230	• Bimetallic Steam Traps • Bellows Steam Traps • Thermodynamic Steam
	Iraps • Disc Type Steam Traps • Orifice Type Steam Traps • Steam Trap
	Surveys: Nethoas-Frequency • Nethoas of Detection • Recommended Steam
	Irap Survey Frequency • Rules of Thumb When Conducting Steam Trap
1020 1045	Projects
1230 - 1245	Dreuk Ouling Testing
	Dressures' Solas - Calculation's Mathed - Margunaut's Mathed
	Calculation's Example • Craph's Example • Craph Analysis • Eville
1015 1015	Culculution's Example • Graph's Example • Graph Analysis • Fully
1245 - 1315	Explosion Proof Equipment • Equipment Usea • Visual Inspection • Test
	Kepori ● Some Fillus with which vve vvorkea ● Online Safety valve Testing
	• Approved Technology • Certified Contractor • Advantages of the on Line
	Sajety value Testing • Correct Sizing of the Outline Line

ME0100-4D - Page 9 of 11

	Valves for Control of Steam Flow Rate
	What Do the Valves Do? • No Load Vs Full Load • Mounting of Valves •
	Why are So Many Valves Used? • The Full Load Conditions • Three
1315 – 1345	Important Parameters • Pressure Ratio • Steam Path • Main Steam System
	• Full Load Conditions: A Case Study • Variation of Initial Pressure, Main
	Steam Temperature, Reheat Steam Temperature & Condenser Vacuum • The
	Loss with the Exit Velocity Condenser Pressure Ratio
	Course Conclusion
1345 – 1400	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Simulators (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art "Valve Sizing Software", "Valve Software 3.0", "Valvestar 7.2 Software" and "PRV²SIZE Software".

ME0100-4D - Page 10 of 11

Bas	0010110100						File Reports Re	eference Library Help	Provide a facebook		7* *1	_20110727.1
ú.	Create new sizing wizard - Fire case				1	6- 6 .	the dependence of the second	riey preytoney billing				
	Fire case Use this page to specify a type and size of	of a vesce	I, its head design, the height	of a medium in the v	easel along with other related				N⊧SIZE	ANDERSON GREENWOOD	CROSBY	Varec
	Calculation type		Unwetted		T.							
	Type of vessel		Horizontal					\$	1 Ouiok			
	Vesselheaddesign		Fist keed					2	- QUICK			
	Vessel diameter	D		inch	6 8				Start a New Quick	Calculation		
	Vessellength	L		inch								
	Biposed surface area of the vessel, calculated	A'		in ^a								
	Exposed surface area of the vessel, menual	A'		10.3								
	Vessel wall temperature	Ter		19.				-	📥 New			
	Set pressure	p		05-	2				Create a New Ton			
	Temperature	T.		*R.					create a new lag			March 199
	Normal operating gas pressure	Pn		pai-	a							
	Normal operating gas temperature	Th	1	98	19 in 19	-						
	Coefficient of discharge	Kđ	8.975									
	Minimum value of factor #	f'min	0.010						Open			
	Minimum required mass flow	W		10x/h					Open on Existing	Too		1
	Minimum required effective discharge area	A		in ²				-	open un Existing	ing		
									Catalogs		0	
	Help			Beck	Next Prish C	ance			View Valve Catalo	gs		
	x											
						1014-15-00 12-55-00	-	Cound	t = 2010, 2011 Type Rev Carbol, Inc. Al	rights reserved. Al biadectaries, trade	names and/or registered trademarks r	sferred is in this prog
								-		00240214	Distant.	
									_			
								_		~ (.		

Course Coordinator Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

ME0100-4D - Page 11 of 11

٦