

COURSE OVERVIEW ME0138 Application of Standards in Boiler, **Pressure Vessel & Piping Systems**

Course Title

Application of Standards in Boiler, Pressure Vessel & Piping Systems

Course Reference

ME0138

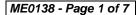
Course Duration/Credits (30 PDHS)

Five days/3.0 CEUs/30 PDHs

Course Date/Venue

Session(s)	Date	Venue
1	February 09-13, 2025	TBA Meeting Room, Taksim Square Hotel, Istanbul, Turkey
2	April 13-17, 2025	Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE
3	July 21-25, 2025	Ajman Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
4	October 26-30, 2025	Al Khobar Meeting Room, Hilton Garden Inn, Al Khobar, KSA

Course Description



This course is intended to introduce codes for construction such as ASME boiler and pressure vessel code and ASME piping codes. It will show the similarities and differences between codes and how standards such as B16, MSS, ASTM, and ISO fit into the various codes.

The course will also demonstrate how the different methods of pressure rating of components are used. The course participants will work examples using the four major methods. These methods are pressure rating by table, schedule, proof testing, and computation. The course will give examples of how to work both with components fully complying and with deviations to fit specific cases.

During this interactive course, participants will learn the differences between different standards rating organizations; the history behind various product

standards; the appropriate needed product standard; the pressure temperature rating tables; the class rating systems and the method of proof testing; and the proof test documentation and comparison method of pressure rating.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on the application of standards in boiler, pressure vessel and piping systems
- Determine which code applies to their projects and which standards fit each code
- Relate the differences between different standards rating organizations
- Discuss the history behind various product standards
- Specify the appropriate needed product standard
- Illustrate pressure temperature rating tables
- Use class rating systems and apply the method of proof testing
- Evaluate proof test documentation and the comparison method of pressure rating
- Develop and use "unlisted components" and distinguish the fatigue decisions as compared to pressure design
- Compute pressure ratings efficiently

Who Should Attend

This course provides an overview of all significant aspects and considerations on the design, fabrication, inspection and repair of oil and gas pipeline code in accordance with the international standard ASME B31.4-B31.8 for those who are involved in engineering or technical aspects of pipelines, including designers, engineers, engineering managers, construction supervisors, operations supervisors, inspectors, code compliance managers, asset integrity managers, pipeline safety regulators, consultants and other technical staff. Further, the course is also suitable for those new to pipelines, as well as providing a good refresher for experienced personnel.

Course Fee

Istanbul	US\$ 6,000 per Delegate + VAT . This rate includes Participants Pack (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.	
Dubai	US\$ 5,500 per Delegate + VAT . This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.	
Abu Dhabi	US\$ 5,500 per Delegate + VAT . This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.	
Al Khobar	US\$ 5,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.	

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:-

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

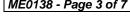
Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Accommodation


Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Karl Thanasis, PEng, MSc, MBA, BSc, is Senior Mechanical & Maintenance Engineer with over 45 years of extensive industrial experience. His wide expertise includes Boiler Maintenance, Boiler Control, Pressure Vessel Operation, Advanced Pressure Vessel Design, Piping & Pipeline, Maintenance, Repair, Shutdown, Turnaround & Outages, Maintenance & Reliability Management, Mechanical Maintenance Planning, Scheduling & Work Control, Advanced Techniques in Maintenance Management, Predictive &

Preventive Maintenance, Maintenance & Operation Cost Reduction Techniques, Reliability Centered Maintenance (RCM), Machinery Failure Analysis, Rotating Equipment Reliability Optimization & Continuous Improvement, Material Cataloguing, Mechanical & Rotating Equipment Troubleshooting & Maintenance, Root Cause Analysis & Reliability Improvement, Condition Monitoring, Root Cause Failure Analysis (RCFA), Steam Generation, Steam Turbines, Power Generator Plants, Gas Turbines, Combined Cycle Plants, Boilers, Process Fired Heaters, Air Preheaters, Induced Draft Fans, All Heaters Piping Work, Refractory Casting, Heater Fabrication, Thermal & Fired Heater Design, Heat Exchangers, Heat Transfer, Coolers, Power Plant Performance, Efficiency & Optimization, Storage Tank Design & Fabrication, Thermal Power Plant Management, Boiler & Steam System Management, Pump Operation & Maintenance, Chiller & Chiller Plant Design & Installation, Pressure Vessel, Safety Relief Valve Sizing & Selection, Valve Disassembling & Repair, Pressure Relief Devices (PSV), Hydraulic & Pneumatic Maintenance, Advanced Valve Technology, Pressure Vessel Design & Fabrication, Pumps, Turbo-Generator, Turbine Shaft Alignment, Lubrication, Mechanical Seals, Packing, Blowers, Bearing Installation, Couplings, Clutches and Gears. Further, he is also versed in Wastewater Treatment Technology, Networking System, Water Network Design, Industrial Water Treatment in Refineries & Petrochemical Plants, Piping System, Water Movement, Water Filtering, Mud Pumping, Sludge Treatment and Drying, Aerobic Process of Water Treatment that includes Aeration, Sedimentation and Chlorination Tanks. His strong background also includes Design and Sizing of all Waste Water Treatment Plant Associated Equipment such as Sludge Pumps, Filters, Metering Pumps, Aerators and Sludge Decanters.

Mr. Thanasis has acquired his thorough and practical experience as the Project Manager, Plant Manager, Area Manager - Equipment Construction, Construction Superintendent, Project Engineer and Design Engineer. His duties covered Plant Preliminary Design, Plant Operation, Write-up of Capital Proposal, Investment Approval, Bid Evaluation, Technical Contract Write-up, Construction and Subcontractor Follow up, Lab Analysis, Sludge Drying and Management of Sludge Odor and Removal. He has worked in various companies worldwide in the USA, Germany, England and Greece.

Mr. Thanasis is a Registered Professional Engineer in the USA and Greece and has a Master's and Bachelor's degree in Mechanical Engineering with Honours from the Purdue University and SIU in USA respectively as well as an MBA from the University of Phoenix in USA. Further, he is a Certified Internal Verifier/Trainer/Assessor by the Institute of Leadership & Management (ILM) a Certified Instructor/Trainer and has delivered numerous trainings, courses, seminars, workshops and conferences worldwide.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

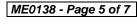
Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

Day I		
0730 – 0800	Registration & Coffee	
0800 - 0815	Welcome & Introduction	
0815 - 0830	PRE-TEST	
	Introduction	
0830 - 0930	Fundamentals and History of Codes and Standards Development of Standards	
	and Codes	
0930 - 0945	Break	
	Pressure Design Basics	
0945 - 1130	Review of Different Methods (Formulae) of Different Codes Including Workshop	
	in the Use of and Differences of those Methods Including Rationale	
	Review of Other Concerns in Codes & Standards Requirements	
1130 - 1230	Fatigue Design Requirements, Material Selection Including the Differences	
	Between SA and a Designations, Fabrication and Examination Requirements	
1230 - 1245	Break	
1245 – 1420	Listed Vs. Unlisted Components	
	How and Why the Various Codes List their Acceptable Standards	
1420 - 1430	Recap	
1430	Lunch & End of Day One	

Day 2


<i>,</i> -		
0730 - 0930	Pressure Rating What it is and What it Means. How it May Vary With Process Conditions	
0930 - 0945	Break	
0945 – 1100	Overview of the Various Rating Methods	
	Tables • Testing • Comparison • Computation	
1100 – 1230	Tables	
	How they are Developed, Reading, Interpolating	
1230 – 1245	Break	
1245 – 1420	Testing	
	Types • Weaknesses, Strengths, Workshops	
1420 - 1430	Recap	
1430	Lunch & End of Day Two	

Day 3

0730 - 0930	Workshops
0930 - 0945	Break
0945 – 1100	By Comparison Method
	B16.11
1100 – 1230	Computational Methods
1100 - 1230	Unlisted Components
1230 – 1245	Break
1245 – 1420	Workshop in Computation
1420 - 1430	Recap
1430	Lunch & End of Day Three

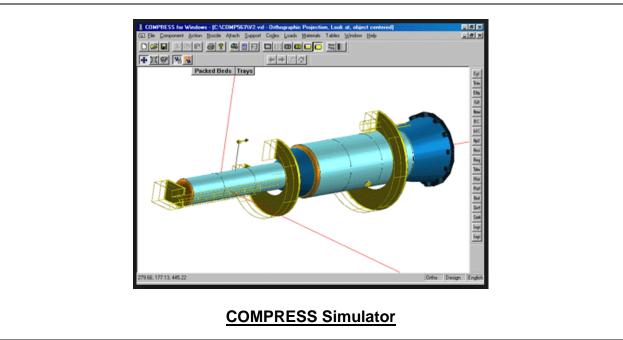
Day 4

Day 7		
0730 - 0930	Review of Various Standards	
	B16 • MSS • PFS	
0930 - 0945	Break	
0945 - 1100	General Standards	
	Thread • Straight • Taper Threads	
1100 – 1230	General Standards (cont'd)	
1100 - 1230	Thread • Straight • Taper Threads (cont'd)	
1230 - 1245	Break	
1245 – 1420	Picking the Proper Standard	
	B16.5 , B16.47 MSS Sp 44 Sp 51 for Example	
1420 – 1430	Recap	
1430	Lunch & End of Day Four	

Day 5

Duy U	
0730 - 0930	Special Fittings
0930 - 0945	Break
0945 - 1100	Special Flanges
1100 - 1230	Review of What is Happening in Standards
1230 - 1245	Break
1245 - 1345	Open Forum
1345 - 1400	Course Conclusion
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

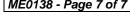




Simulator (Hands-on Practical Sessions)

Practical session will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the simulator "Win Boiler Sim" and "COMPRESS".

Course Coordinator


Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

