

COURSE OVERVIEW FE0920 API 580 Risk Based Inspection

Course Title

API 580 Risk Based Inspection

Course Date/Venue

Session 1: August 04-08, 2024/SAS Meeting Room, Holiday Inn Muscat al Seeb, an IHG Hotel, Muscat. Oman

Session 2: December 15-19, 2024/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zaved Road, Dubai, UAE

Exam Window/Venue

December 06-27, 2024/Abu Dhabi, Dubai, Al-Khobar, Jeddah, Kuwait, Amman, Beirut, Cairo, Manama and Muscat. Participant has the option to attend at any of the above cities

Exam Registration Closing Date

September 27, 2024

Course Reference

FF0920

Course Duration/Credits Five days/4.0 CEUs/40 PDHs

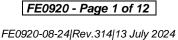
Course Description

This practical and highly-interactive includes various practical sessions and exercises. Theory learnt will be applied using our state-of-theart simulators.

The API 580 Risk-Based Inspection (RBI) certification individual's knowledge of exam tests the techniques, based on the practices and principles outlined in API Recommended Practice 580 (Risk-Based Inspection) and API Standard 581 (Risk-Based Inspection Technology).

This course is designed to train individuals who are interested in obtaining the API 580 RBI Inspector Certification, as well as those who are seeking an advanced knowledge of Risk Based Inspection requirements. Included with the course is a pre-study guide and student classroom workbook. The student receives instruction regarding how to take the test, as well as insight into the intricacies of "real world" situations. Daily tests are designed to gauge students' proficiency and understanding of the material.

Haward Technology is proud of its 90% pass rate on all our API sponsored courses.



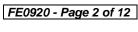
Further, the course will also discuss the importance of risk-based inspection (RBI) in industry and the goals and benefits of RBI program; the qualitative, semi-quantitative and quantitative methods; the selection criteria for RBI methodology and integration of RBI into inspection programs; the basic concepts of risk, risk matrix and risk ranking and API 581 risk assessment procedures; the common damage mechanisms in the refining and petrochemical industry; the impact of damage mechanisms on risk assessment; the equipment and circuits for RBI; the data collection and documentation for RBI and integration of plant inspection data; the relevant API standards (API 510, 570, 653) and the legal and regulatory framework affecting RBI; the probability of failure (POF) and consequence of failure (COF); the RBI inspection techniques, nondestructive testing (NDT) methods and selection of appropriate NDT methods based on risk; developing inspection planning and scheduling; and the data quality and management in RBI assessment.

During this interactive course, participants will learn the software tools for RBI, RBI program and RBI program maintenance; the risk communication and reporting, performance measurement and improvement; the RBI program audit and review; the quantitative risk assessment (QRA) and reliability-centered maintenance (RCM); the life cycle cost analysis and advanced inspection technologies; the human factors in risk assessment and organizational culture and its impact on RBI effectiveness; incorporating safety and environmental risks; and the compliance with safety and environmental regulations.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Get prepared for the next API 580 exam and have enough knowledge and skills to pass such exam in order to get the API 580 Inspector certificate
- Discuss API 580 including the importance of risk-based inspection (RBI) in industry and the goals and benefits of RBI program
- Carryout qualitative, semi-quantitative and quantitative methods including the selection criteria for RBI methodology and integration of RBI into inspection programs
- Identify the basic concepts of risk, risk matrix and risk ranking and API 581 risk assessment procedures
- Recognize the common damage mechanisms in the refining and petrochemical industry and the impact of damage mechanisms on risk assessment
- Identify the equipment and circuits for RBI as well as apply data collection and documentation for RBI and integration of plant inspection data
- Discuss the relevant API standards (API 510, 570, 653) and the legal and regulatory framework affecting RBI
- Explain the probability of failure (POF) and consequence of failure (COF)
- Apply RBI inspection techniques, non-destructive testing (NDT) methods and selection of appropriate NDT methods based on risk
- Develop inspection planning and scheduling and apply data quality and management in RBI assessment
- Use software tools for RBI, develop RBI program and implement RBI program maintenance



- Employ risk communication and reporting, performance measurement and improvement and RBI program audit and review
- Carryout quantitative risk assessment (QRA) and reliability-centered maintenance (RCM)
- Illustrate life cycle cost analysis covering cost-benefit analysis for inspection interventions and economic modeling of RBI decisions
- Apply advanced inspection technologies and identify human factors in risk assessment and organizational culture and its impact on RBI effectiveness
- Incorporate safety and environmental risks and comply with safety and environmental regulations

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a **Tablet PC**.

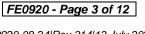
Who Should Attend

This course is designed for those involved in risk-based inspection methodologies and practices in refineries, gas, oil and petrochemical facilities. This includes inspection engineers and inspectors who are seeking API-580 certification. Other engineers, inspectors, maintenance staff, facility integrity personnel and asset managers who are considering or implementing risk-based inspection systems will definitely benefit from this course.

Exam Eligibility & Structure

Exam candidates shall have the following minimum pre-requisites:-

Education	Years of Experience	Experience Required
BS or higher in engineering or technology	1 year	Any experience in the petrochemical industry
2-year degree or certificate in engineering or technology	2 years	Any experience in the petrochemical industry
High school diploma or equivalent	3 years	Any experience in the petrochemical industry
No formal education	5 or more years	Any experience in the petrochemical industry



Required Codes & Standards

Listed below are the effective editions of the publications required for this exam for the date(s) shown above. Each student must purchase these documents separately and have them available for use during the class as their cost is not included in the course fees:-

- API Recommended Practice 580 (Risk-Based Inspection): This document provides guidance on developing a risk-based inspection (RBI) program for fixed equipment and piping in the petrochemical industry.
- API Standard 581 (Risk-Based Inspection Technology): Provides the quantitative procedures to establish an inspection program using risk-based methods for assessing and managing the risk of equipment failure in hydrocarbon and chemical process facilities
- API Recommended Practice 571 (Damage Mechanisms Affecting Fixed Equipment in the Refining Industry): While not the primary focus, understanding the common damage mechanisms presented in this document is crucial for identifying risks and making informed decisions in an RBI program.

Note: API and ASME publications are copyrighted material. Photocopies of API and ASME publications are not permitted.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures
20% Practical Workshops & Work Presentations
30% Hands-on Practical Exercises & Case Studies
20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

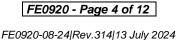
Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Training Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

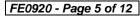
Exam Fee


US\$ 550 per Delegate + VAT.

API Certificate(s)

API-580 certificate will be issued to participants who have successfully passed the API-580 examination.

(2) Official Transcript of Records will be provided to the successful delegates with the equivalent number of ANSI/IACET accredited Continuing Education Units (CEUs) earned during the course.



Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 4.0 CEUs (Continuing Education Units) or 40 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Steve Murphy (UK) is a Senior Inspection Engineer with almost 30 years of extensive industrial experience within the Oil & Gas, Refinery and Petrochemical industries. His expertise widely covers in the areas of Pressure Vessel Inspection (API 510), Piping Inspection (API 570), Risk Based Inspection (API 580), Damage Mechanisms (API 571), Aboveground Storage Tank Inspection (API 653), Asset Integrity Management, Welding & Fabrication, Piping Inspection, Pipelines, Risk-Based Inspection (RBI), Fitness-for-Service (FFS), Asset Integrity Management (AIM), Plant Inspection & Corrosion Engineering,

Metallurgy, Corrosion & Prevention of Failures, Material Selection & Properties, Welding Technology, Welded Steel Tanks for Oil Storage, Cathodic Protection, Damage Mechanisms, Mechanical & Metallurgical Failure Mechanisms, Atmospheric & Low-Pressure Storage Tank Inspection, Welding Inspection & Metallurgy Pressure Design Thickness Calculation, Metallurgy, Corrosion, Mechanical Integrity Assessment, Vibration Analysis, Pressure & Hydrostatic Leak Testing, Pneumatic Leak Testing & Calculations, Preheating & Heat Treatment Requirements, Pressure Piping Design, Pressure Piping Inspection Practices, Piping Inspection, Repair & Re-rating, Corrosion & Remaining Life Calculation, Fabrication & Inspection, Conventional & Advanced Nondestructive Testing (NDT), Positive Material Identification (PMI), Pressure-Relieving Devices and Construction, Installation Fabrication, Erection, Inspection, Maintenance, Operation, Rating, Repair, Alteration, Reconstruction, Pigging, Integrity Assessment, Flaw Evaluation and Fitness-for-Service (FFS) of Piping. He is currently the Plant API Inspector wherein he is responsible for the statutory inspection of process plant and all pressurized equipment on the new three-train natural gas facility.

During his career life, Mr. Murphy has gained his practical and field experience through his various significant positions and dedication as the Senior Project Quality Control Manager, Acting QA Manager, Site EPC Quality Manager, Asset Integrity Management Specialist, Quality Specialist, Asset Integrity Engineer, Quality Engineer, Senior Piping Inspector, Lead Corrosion Inspector, Statutory Inspector (TPI), Senior NDE Technician, Mechanical Surveyor, Quality Coordinator and Project Management Team Quality Control Representative for various international companies like the Chuandongbei Gas Project, PT Donggi-Senoro LNG, Oceaneering – CABGOC (Chevron), Fluor Mid-East Ltd, Fluor Arabia Ltd, ENGEN Petroleum Refinery Ltd, Inspection Services – Sasol II, Badger Africa, Gasal Management Systems (Pty) Ltd. and PETROSA.

Mr. Murphy has a Bachelor degree in Engineering and Foundation degree in Materials Fabrication & Engineering from the Open University, UK. Further, he holds a Diploma in Welding Technology from the TWI Cambridge, UK and a Certified Quality Assurance & Quality Control from the City & Guilds, UK. Moreover, he is a Certified Instructor/Trainer, a Certified Pressure Vessels Inspector (API 510), a Certified Piping Inspector (API 570), a Certified Corrosion & Material Specialist (API 571), a Certified Risk Based Inspector (API 580), a Certified Above Ground Storage Tank Inspector (API 653), a NACE – CIP Coating Inspector Level 1 from the National Association of Corrosion Engineers (NACE-USA), a Certified SAIW Level II Welding/Fabrication Inspector, a Certified CSWIP 3.2 Senior Welding Inspector, a Certified SAIW-SAQCC IPE (Inspector of Pressurized Equipment) and a SAIW Certified Level II in Magnetic Particle Testing (MT), Liquid Penetrant Testing (PT), Ultrasonic Testing (UT) and Radiographic Testing (RT). He is a Registered Incorporated Engineer by the Engineering Council (The Welding Institute) and has further delivered numerous courses, workshops, trainings, seminars and conferences worldwide.

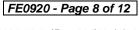
Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

Day I	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Introduction to API 580 & Risk-Based Inspection (RBI)
0830 - 0930	Overview of API 580 • Importance of RBI in Industry • Goals & Benefits of
	Implementing an RBI Program
0930 - 0945	Break
	Risk-Based Inspection Methodologies
0945 - 1100	Qualitative, Semi-Quantitative & Quantitative Methods • Selection Criteria for
	RBI Methodology • Integration of RBI into Inspection Programs
	Risk Assessment & API 581
1100 - 1200	Basic Concepts of Risk: Likelihood & Consequence • Risk Matrix & Risk Ranking •
	Introduction to API 581 Risk Assessment Procedures
1200 – 1300	Lunch
	Damage Mechanisms (API RP 571)
1300 - 1430	Common Damage Mechanisms in the Refining & Petrochemical Industry • Impact
	of Damage Mechanisms on Risk Assessment
	Planning & Scoping for RBI
1430 - 1530	Identifying Equipment & Circuits for RBI • Data Collection & Documentation for
	RBI Assessment • Integration with Plant Inspection Data
1530 – 1545	Break
	Regulatory & Industry Standards for RBI
1545 - 1645	Overview of Relevant API Standards (API 510, 570, 653) • Legal & Regulatory
	Framework Affecting RBI
1645 – 1700	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1700	End of Day One

Dav 2

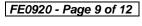

Day Z	
0730 - 0830	Review of Day 1
0830 - 0930	Probability of Failure (POF)
	Factors Affecting POF • Inspection History & POF • Data Analysis & Interpretation
0930 - 0945	Break
0945 – 1100	Consequence of Failure (COF)
	Safety, Environmental & Financial Impacts • COF Calculation Methodologies
1100 – 1200	RBI Inspection Techniques
	Non-Destructive Testing (NDT) Methods • Selection of Appropriate NDT Methods
	Based on Risk
1200 - 1300	Lunch
1300 - 1430	Inspection Planning & Scheduling
	Prioritizing Inspection Activities Based on Risk • Developing Inspection Plans &
	Schedules

1430 – 1530	Data Quality & Management
	Importance of Data Quality in RBI Assessment • Data Management Practices &
	Tools
1530 - 1545	Break
1545 – 1645	Software Tools for RBI
	Overview of Available RBI Software • Criteria for Selecting RBI Software
	Recap
1645 – 1700	Using this Course Overview, the Instructor(s) will Brief Participants about the Topics
	that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1700	End of Day Two

Day 3

Review of Day 2
Developing an RBI Program
Steps to Implement an RBI Program • Integration with Existing Asset Management
Systems
Break
RBI Program Maintenance
Review & Update of RBI Assessments • Managing Changes in Process Conditions or
Equipment
Case Studies: Implementing RBI
Examples of Successful RBI Implementation • Lessons Learned & Best Practices
Lunch
Risk Communication & Reporting
Communicating Risk to Stakeholders • Reporting Requirements & Formats
Performance Measurement & Improvement
Key Performance Indicators (KPIs) for RBI Programs • Continuous Improvement in
RBI Processes
Break
RBI Program Audit & Review
Audit Objectives & Methodologies • Addressing Findings & Implementing Corrective
Actions
Recap
Using this Course Overview, the Instructor(s) will Brief Participants about the Topics
that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
End of Day Three

Day 4

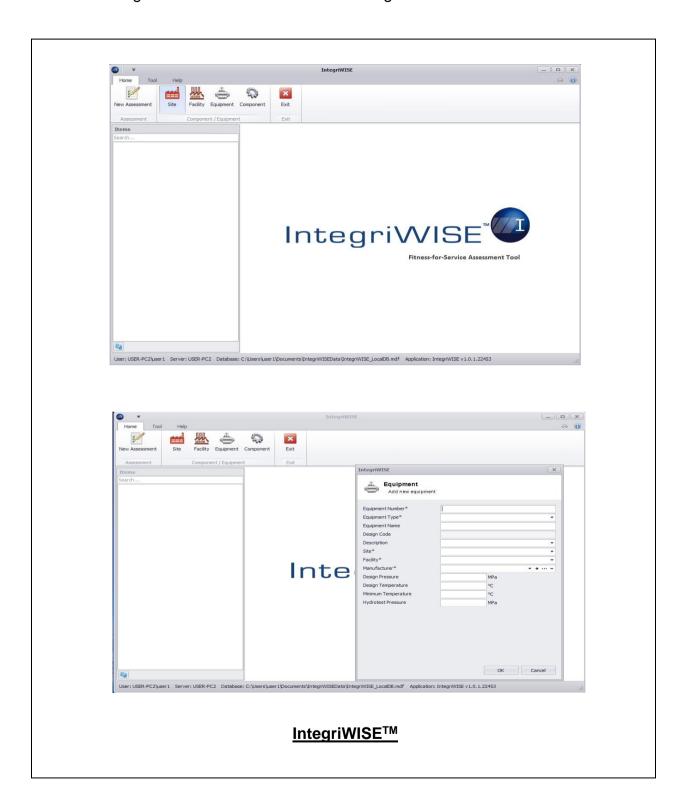

Duy T	
of Day 3	
red Risk Assessment Techniques & Management	
ative Risk Assessment (QRA) • Detailed Methodologies for QRA • Case	
on QRA Application	
lity-Centered Maintenance (RCM) & RBI	
ing RCM with RBI • Optimizing Maintenance Strategies Based on Risk	
cle Cost Analysis	
nefit Analysis for Inspection Interventions • Economic Modeling of RBI	
is	
red Inspection Technologies	
dvancements in NDT & Inspection Technologies • Application of Advanced	
ogies in RBI	

1430 – 1530	Human Factors & Organizational Impact on RBI Role of Human Factors in Risk Assessment • Organizational Culture & its Impact on RBI Effectiveness	
1530 - 1545	Break	
1545 – 1645	Safety & Environmental Considerations in RBI Incorporating Safety & Environmental Risks • Compliance with Safety & Environmental Regulations	
1645 – 1700	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	
1700	End of Day Four	

Day 5	
0730 - 0830	Review of Day 4
	Review & Exam Preparation
0830 - 0930	Review of API 580 & 581 Key Concepts • Critical Elements of API 580 & 581 •
	Recap of Main Topics & Principles
0930 - 0945	Break
0945 – 1100	Sample Exam Questions & Discussion
	Reviewing Sample Questions • Discussion on Approaches to Answering Questions
	Exam Strategies & Time Management
1100 - 1230	Tips for Effective Exam Preparation • Strategies for Managing Time During the
	Exam
1230 - 1330	Lunch
	Case Study Workshop
1330 - 1500	Group Discussion on a Comprehensive RBI Case Study • Practical Application of
	RBI Concepts & Methodologies
1500 - 1515	Break
	Open Q&A Session
1515 – 1615	Addressing any Remaining Questions & Clarifications • Sharing Resources for
	Further Study
	Course Conclusion
1615 – 1630	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1630 – 1645	POST-TEST
1645 – 1700	Presentation of Course Certificate
1700	End of Course

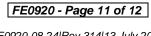
MOCK Exam

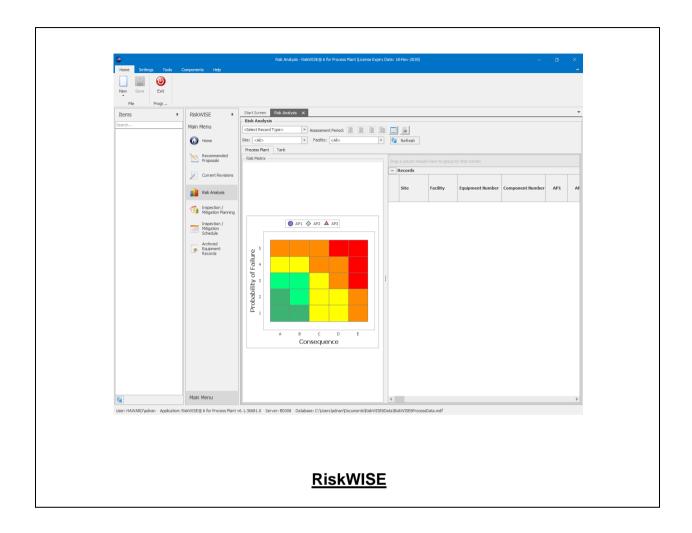
Upon the completion of the course, participants have to sit for a MOCK Examination similar to the exam of the Certification Body through Haward's Portal. Each participant will be given a username and password to log in Haward's Portal for the MOCK Exam during the 7 days following the course completion. Each participant has only one trial for the MOCK exam within this 7-day examination window. Hence, you have to prepare yourself very well before starting your MOCK exam as this exam is a simulation to the one of the Certification Body.



Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the state-of-the-art simulator "IntegriWISETM" and "RiskWISE".





<u>Course Coordinator</u>
Mari Nakintu, Tel: +971 2 30 91 714, Email: <u>mari1@haward.org</u>

