

COURSE OVERVIEW IE0403 SIL Determination & Hazard Assessment

Course Title

SIL Determination & Hazard Assessment

Course Date/Venue

- Session 1: May 26-30, 2024/Oryx Meeting Room, DoubleTree By Hilton Doha-Al Sadd, Doha, Qatar
- Session 2: October 06-10, 2024/Oryx Meeting Room, DoubleTree By Hilton Doha-Al Sadd, Doha, Qatar

CEUS

30 PDHs)

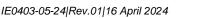
Course Reference

IE0403

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description


This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of SIL Determination and Hazard Assessment. It covers the role of SIS in hazard mitigation and the definition and purpose of SIL; the relevant safety standards covering IEC 61508 and IEC 61511; the risk and safety management, hazard and operability study (HAZOP), failure mode and effects analysis (FMEA) and layers of protection analysis (LOPA); the risk reduction and SIL selection as well as initiating events, consequences, and existing safeguards.

Further, the course will also discuss the risk graphs for SIL determination, verification process and the design principles and architectures that influence SIL levels; how quantitative risk assessment (QRA) supports SIL determination; the advanced HAZOP and FMEA techniques, fault tree analysis (FTA) and event tree analysis (ETA); the dynamic risk assessments and safety requirements specification (SRS) for SIS; and the impact of human error and organizational factors on safety.

IE0403 - Page 1 of 8

During this interactive course, participants will learn the SIL verification process and techniques including reliability analysis for SIS components; the software tools used in the industry for SIL verification and reliability calculations; the functional safety assessment and auditing, management of change and best practices for integrating SIS design and SIL considerations into daily operation; the effective strategies for the operation and maintenance of SIS; monitoring SIS performance including SIL performance indicators and continuous improvement practices; conducting incident investigations and using findings to improve safety and SIL determinations; the SIS lifecycle from concept to decommissioning; and the importance of lifecycle management for maintaining SIL.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on SIL determination and hazard assessment
- Discuss the role of SIS in hazard mitigation and the definition and purpose of SIL
- Explain the relevant safety standards covering IEC 61508 and IEC 61511
- Carryout risk and safety management, hazard and operability study (HAZOP), failure mode and effects analysis (FMEA) and layers of protection analysis (LOPA)
- Apply risk reduction and SIL selection as well as identify initiating events, consequences, and existing safeguards
- Use risk graphs for SIL determination and their application in different scenarios
- Implement verification process to ensure SIL targets are achievable with selected SIS designs
- Discuss the design principles and architectures that influence SIL levels
- Exploring how quantitative risk assessment (QRA) supports SIL determination and its application in complex scenarios
- Employ advanced HAZOP and FMEA techniques as well as fault tree analysis (FTA) and event tree analysis (ETA)
- Apply dynamic risk assessments and develop safety requirements specification (SRS) for SIS based on hazard assessments and SIL determinations
- Discuss the impact of human error and organizational factors on safety and how to mitigate these risks
- Carryout SIL verification process and techniques including reliability analysis for SIS components
- Recognize the software tools used in the industry for SIL verification and reliability calculations
- Apply functional safety assessment and auditing, management of change and best practices for integrating SIS design and SIL considerations into daily operation
- Develop effective strategies for the operation and maintenance of SIS to ensure ongoing SIL compliance

IE0403 - Page 2 of 8 IE0403-05-24|Rev.01|16 April 2024

- Monitor SIS performance including SIL performance indicators and continuous improvement practices
- Conduct incident investigations and use findings to improve safety and SIL determinations
- Discuss SIS lifecycle from concept to decommissioning and the importance of lifecycle management for maintaining SIL

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of SIL determination and hazard assessment for senior process control engineers, senior control systems engineers, process control engineers, process engineers, control systems engineers, reliability and integrity engineers as well as safety engineers, professionals and regulators.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

- 30% Lectures
- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

US\$ 5,500 per Delegate. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

IE0403 - Page 3 of 8

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

• The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

IE0403 - Page 4 of 8

IE0403-05-24|Rev.01|16 April 2024

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Sydney Thoresson, PE, BSc, is a Senior Electrical & Instrumentation Engineer with over 40 years of extensive experience within the Petrochemical, Utilities, Oil, Gas and Power industries. His specialization highly evolves in Process Control Instrumentation, Process Instrumentation & Control. Control. Process Instrumentation. Troubleshooting & Problem Solving, Instrumentation Engineering, Process Control (PCI) & Safeguarding, Instrument Calibration & Maintenance,

Instrumented Safety Systems, High Integrity Protection Systems (HIPS), Process Controller, Control Loop & Valve Tuning, Compressor Control & Protection, Control Systems, Programmable Logic Controllers (PLC), SCADA System, PLC & SCADA - Automation & Process Control, PLC & SCADA Systems Application, Technical DCS/SCADA, PLC-SIMATIC S7 300/400: Configuration, Programming and Troubleshooting, PLC, Telemetry and SCADA Technologies, Cyber Security of Industrial Control System (PLC, DCS, SCADA & IED), Basics of Instrumentation Control System, DCS, Distributed Control System - Operations & Techniques, Distributed Control System (DCS) Principles, Applications, Selection & Troubleshooting, Distributed Control Systems (DCS) especially in Honeywell DCS, H&B DCS, Modicon, Siemens, Telemecanique, Wonderware and Adrioit, Safety Instrumented Systems (SIS), Safety Integrity Level (SIL), Emergency Shutdown (ESD), Emergency Shutdown System, Variable Frequency Drive (VFD), Process Control & Safeguarding, Field Instrumentation, Instrumented Protective Devices Maintenance & Testing, Instrumented Protective Function (IPF), Refining & Rotating Equipment, Equipment Operations, Short Circuit Calculation, Voltage Drop Calculation, Lighting Calculation, Hazardous Area Classification, Intrinsic Safety, Liquid & Gas Flowmetering, Custody Measurement, Ultrasonic Flowmetering, Loss Control, Gas Measurement, Flowmetering & Custody Measurement, Multiphase Flowmetering, Measurement & Control and Mass Measuring System Batching (Philips). Further, he is also well-versed in Electrical Safety, Electrical Hazards Assessment, Electrical Equipment, Personal Protective Equipment, Log-Out & Tag-Out (LOTO), ALARP & LOPA Methods, Confined Workspaces, Power Quality, Power Network, Power Distribution, Distribution Systems, Power Systems Control, Power Systems Security, Power Electronics, Electrical Substations, UPS & Battery System, Earthing & Grounding, Power Generation, Protective Systems, Electrical Generators, Power & Distribution Transformers, Electrical Motors, Switchgears, Transformers, AC & DC Drives, Variable Speed Drives & Generators and Generator Protection. He is currently the **Projects Manager** wherein he manages projects in the field of electrical and automation engineering and in-charge of various process hazard analysis, fault task analysis, FMEA and HAZOP study.

During Mr. Thoresson's career life, he has gained his thorough and practical experience through various challenging positions and dedication as the **Contracts & Projects Manager**, **Managing Director**, **Technical Director**, **Divisional Manager**, **Plant Automation Engineer**, **Senior Consulting Engineer**, **Senior Systems Engineer**, **Consulting Engineer**, **Service Engineer** and **Section Leader** from several international companies such as **Philips**, **FEDMIS**, **AEG**, **DAVY International**, **BOSCH**, **Billiton** and **Endress/Hauser**.

Mr. Thoresson is a **Registered Professional Engineering Technologist** and has a **Bachelor's** degree in **Electrical & Electronics Engineering** and a **National Diploma** in **Radio Engineering**. Further, he is a **Certified Instructor/Trainer**, a **Certified Internal Verifier/Assessor/Trainer** by the **Institute of Leadership & Management (ILM)** and an active member of the International Society of Automation (ISA) and the Society for Automation, Instrumentation, Measurement and Control (SAIMC). He has further delivered numerous trainings, courses, seminars, conferences and workshops worldwide.

IE0403 - Page 5 of 8 IE0403-05-24|Rev.01|16 April 2024

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0845	<i>Introduction to Safety Instrumented Systems (SIS) & SIL:</i> The Role of SIS in Hazard Mitigation & the Definition & Purpose of SIL
0845 - 0930	Overview of Relevant Safety Standards: An Introduction to Key Standards such as IEC 61508 & IEC 61511, Outlining their Requirements & Applicability
0930 - 0945	Break
0945 - 1100	Basic Concepts of Risk & Safety Management: Understanding Risk, Hazard & the Principles of Safety Management
1100 - 1230	<i>Hazard Identification Techniques:</i> Introduction to Methods Like HAZOP (Hazard & Operability Study) & FMEA (Failure Mode & Effects Analysis)
1230 - 1245	Break
1245 - 1345	<i>Layers of Protection Analysis (LOPA):</i> An Overview of LOPA & its Role in SIL Determination
1345 - 1420	Risk Reduction & SIL Selection: How SIL Levels Correspond to Risk Reduction & the Basics of Selecting SIL Targets
1420 – 1430	Recap
1430	Lunch & End of Day One

Day 2

Detailed Exploration of LOPA: Conducting LOPA including Identifying Initiating Events, Consequences & Existing Safeguards
<i>SIL Determination Using Risk Graphs:</i> How to Use Risk Graphs for SIL Determination and their Application in Different Scenarios
Break
SIL Verification Concepts: Verification Process to Ensure SIL Targets are Achievable with Selected SIS Designs
SIS Design Considerations for SIL Achievement: Discussing the Design Principles & Architectures that Influence SIL Levels
Break
Quantitative Risk Assessment (QRA): How QRA Supports SIL Determination & its Application in Complex Scenarios
<i>Workshop on SIL Determination:</i> Hands-on Exercises Using Real-World Examples to Apply SIL Determination Methodologies
Recap
Lunch & End of Day Two

IE0403 - Page 6 of 8 IE0403-05-24|Rev.01|16 April 2024

Day 3

	Advanced HAZOP & FMEA Techniques: Exploring More Complex Scenarios
0730 – 0830	& Applying These Techniques to Detailed System Analysis
0830 - 0930	Fault Tree Analysis (FTA) & Event Tree Analysis (ETA): Understanding
	these Analytical Methods & their Application in Hazard Assessment
0930 - 0945	Break
0945 - 1100	Dynamic Risk Assessments: Introduction to Dynamic & Real-Time Risk
	Assessment Methodologies
1100 - 1230	Safety Requirements Specification (SRS) for SIS: The Process of Developing
	SRS Documents Based on Hazard Assessments & SIL Determinations
1230 - 1245	Break
101E 121E	Human Factors in Hazard Assessment: The Impact of Human Error &
1245 – 1345	Organizational Factors on Safety & How to Mitigate these Risks
1345 - 1420	Case Study Analysis: Analyzing Case Studies to Apply Advanced Hazard
	Assessment Techniques & Draw Lessons Learned
1420 - 1430	Recap
1430	Lunch & End of Day Three

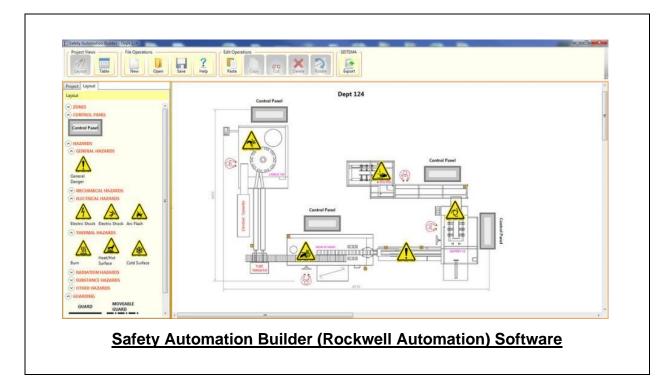
Day 4

Duy +	
0730 - 0830	SIL Verification Process & Techniques: Detailed Steps for Verifying that SIS
	Designs Meet the Required SIL Levels
0830 - 0930	Reliability Analysis for SIS Components: How to Analyze Component
	<i>Reliability & Its Impact on Overall SIS Performance</i>
0930 - 0945	Break
0945 - 1100	Software Tools for SIL Verification & Reliability Analysis: Introduction to
	Software Tools Used in the Industry for SIL Verification & Reliability
	Calculations
1100 - 1230	Functional Safety Assessment & Auditing: The Principles of Functional Safety
	Assessment & the Role of Auditing in Ensuring Compliance with SIL
	Requirements
1230 - 1245	Break
1245 - 1315	Management of Change & Its Impact on SIL: How Changes in Processes,
	Systems or Operational Conditions Affect SIL & How to Manage These Changes
1315 - 1420	Group Exercise on SIL Verification: Practical Exercise Involving Participants
	in a Mock SIL Verification Process Using Example Data
1420 - 1430	Recap
1430	Lunch & End of Day Four

Day 5

0730 – 0900	<i>Implementing SIS & SIL Requirements in Operations:</i> Best Practices for Integrating SIS Design & SIL Considerations into Daily Operations
0900 - 0930	SIS Operation & Maintenance Strategies: Developing Effective Strategies for
	the Operation & Maintenance of SIS to Ensure Ongoing SIL Compliance
0930 - 0945	Break
0945 - 1145	Performance Monitoring & Improvement of SIS: Techniques for Monitoring SIS Performance, Including SIL Performance Indicators & Continuous Improvement Practices
1130 – 1230	<i>Incident Investigation & Learning from Events:</i> How to Conduct Incident Investigations & Use Findings to Improve Safety & SIL Determinations

IE0403 - Page 7 of 8 IE0403-05-24|Rev.01|16 April 2024



1230 - 1245	Break
1245 - 1345	SIS Lifecycle Management: Overview of the SIS Lifecycle from Concept to Decommissioning & The Importance of Lifecycle Management for Maintaining SIL
1345 – 1400	Course Conclusion
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the "Safety Automation Builder Software (Rockwell Automation)" software.

Course Coordinator

Jaryl Castillo, Tel: +974 4423 1327, Email: jaryl@haward.org

IE0403 - Page 8 of 8

IE0403-05-24|Rev.01|16 April 2024