COURSE OVERVIEW FE0171 Pipeline & Piping Inspection, Maintenance, Repair & Integrity Assessment

Course Title

Pipeline & Piping Inspection, Maintenance, Repair & Integrity Assessment

Course Date/Venue

October 20-24, 2024/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

Course Reference

FE0171

Course Duration/Credits

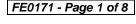
Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of pipeline and piping inspection, maintenance, repairing & integrity assessment. It covers the pipeline and piping codes, piping and pipeline materials and equipment; piping vibration measurement, analysis and corrective action; the flow induced vibration, slug flow, surge, piping vibration involving control valves and other sources of vibration; the practical methods for evaluating piping vibration; and the measurement and analysis of vibration.

During this interactive course, participants will learn the options for resolving vibration, acceptance criteria and methods of piping vibration damping; the proper examination and testing as well as pressure and leak testing; the degradation mechanisms; the operation and maintenance strategies, procedures and repair techniques; the fitness-for-service and remaining life overview; and the pipeline failure, overpressure, pipeline life extension, system integrity of gas pipelines, risk-based inspections and pipeline integrity management.



Course Objectives

Upon the successful completion of this course, each participant will be able to: -

- Apply systematic techniques on pipeline and piping inspection, maintenance, repairing and integrity assessment
- Recognize the pipeline and piping codes, piping and pipeline materials and equipment
- Employ piping vibration measurement, analysis and corrective action
- Determine flow induced vibration and slug flow including surge, piping vibration involving control valves and other sources of vibration
- Apply practical methods for evaluating piping vibration and explain how to measure and analyze vibration
- Recognize the options for resolving vibration, acceptance criteria and methods of piping vibration damping
- Carryout proper examination and testing as well as pressure and leak testing
- Recognize the degradation mechanisms covering the classification of corrosion mechanisms, general wall thinning, local corrosion, crevice corrosion, pitting corrosion and etc.
- Employ operation and maintenance strategies, procedures and repair techniques
- Discuss fitness-for-service and remaining life overview
- Determine pipeline failure, overpressure, pipeline life extension, system integrity of gas pipelines, risk-based inspections and pipeline integrity management

Who Should Attend

This course provides an overview of all significant aspects and considerations of pipeline & piping inspection, maintenance, repairing & integrity assessment for engineers, maintenance staff and inspectors responsible for the integrity, maintenance and repair of pipelines and piping systems. Further, the course is essential for engineers in charge of pipeline or piping design. Project engineers, site/field engineers and piping/pipeline project managers will be very interested in the pipeline/piping installation part of the course. Senior draftsmen and technical staff in the engineering department will benefit from the pipeline/piping design part of this state-of-the-art course. The fitness-for-service and integrity techniques are based on quantitative analysis, please bring a calculator.

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a Tablet PC.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

ACCREDITED
PROVIDER

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

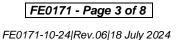
Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Accommodation


Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Hesham Moharram, is a Senior Inspection Engineer with over 35 years of industrial experience in the Oil & Gas, Refineries and Petrochemical industries. His expertise includes Facility Integrity, Technical Integrity, Integrated Safety Management Plan, Inspection, Repair, Maintenance, Alteration and Reconstruction of Aboveground Storage Tanks, Pressure Vessels, Piping Inspection, Risk-Based Inspection, Fitness-for-Service (FFS), Asset Integrity Management, Plant Inspection &

Corrosion Engineering, Pipeline Integrity Assessment, Integrity Management, Pipeline Rehabilitation & Repair, Pipeline Design & Maintenance, Corrosion Monitoring & Cathodic Protection, Pressure & Leak Testing, Metallurgy, Corrosion & Prevention of Failures, Material Selection & Properties, Physical Technology, Fabrication & Inspection, Metallurgy of Steel, Welding Conventional & Advanced Non-destructive Testing (NDT), Process Safety Hazard Analyses (PHA), Risk Assessment, Pigging & Pipe Support and Acoustic Emission. Further, he is also well-versed in Quality Assurance & Quality Control, HAZOP, Permit-to-Work, Hazard Identification, Safety Meeting, Accident Investigation, Emergency Response, Task Risk Assessment, Root Cause & Failure Analysis, Fire Fighting, First Aid Basic, CPR, H2S Awareness, Distillation Units, Preventive Maintenance, FEED, Contract Management, Stress Management, Coaching & Mentoring Skills, Interpersonal Skills and Communication Skills. He is currently the Senior Inspection Engineer wherein he is responsible in various inspection works like fitness-for-service, remaining life assessments, risk based inspection, intelligent pigging, problematic pipe supports, non-destructive testing and acoustic emission.

Throughout his career life, Mr. Hesham has provided significant contributions to the companies he has worked with, having filled key positions such as being the **Senior Inspection Engineer**, **Inspection Engineer**, **Production Engineer**, **API Instructor**, **QA/QC** and **Supervisor** for international companies such as Abu Dhabi Company for Onshore Oil Operations (**ADCO**), Suez Oil Company (**SUCO**), Cairo Oil Refining Company (**CORC**) Refinery, DURA Refinery, State Company for Oil Projects (**SCOP-IRAQ**) and **Iron & Steel**.

Mr. Moharram has a **Bachelor's** degree in **Metallurgical Engineering**, from the Suez Canal University. Further, he is a **Certified Instructor/Trainer**, a **Certified Pressure Vessel Inspector** (API-510), Certified Piping Inspector (API-570), Certified Aboveground Storage Tanks Inspector (API-653), Certified Risk Based Inspector (API-580), an ASNT Certified Level II in UT, RT, MT, PT and Eddy Current Testing.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Sunday 20th of October 2024 Day 1:

Day I.	Sunday 20 Of October 2024
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Introduction to Piping, Flows Lines & Headers
0830 - 0930	History of Piping, Pipeline & Headers Technology • Brief Historical Outline
0030 - 0930	• Types & Classification of Pipelines • Purpose of Pipelines • Routes Across
	the Environments
0930 - 0945	Break
	Pipeline & Piping Codes
0045 1020	ASME B31 Piping & Pipeline Codes • ASME B31.3 Process Piping • ASME
0945 – 1030	B31.4 Pipeline Transportation of Liquid Hydrocarbons & Other Liquids •
	ASME B31.8 Gas Transmission & Distribution Piping Systems
	Pipeline & Piping Codes (cont'd)
1020 1220	ASME Boiler & Pressure Vessel Codes • API Codes & Standards 500 Series •
1030 – 1230	API Codes & Standards 600 Series • API Codes & Standards 5 Series • API
	Codes & Standards 1100 & 2200 Series
1230 – 1245	Break
	Pipeline & Piping Codes (cont'd)
1245 – 1420	ASME B16 Fitting Standards • NACE Recommended Standards, MSS-SP,
1243 - 1420	PFI Standards • Fundamentals of Design, Fabrication, Operation, Maintenance
	& Integrity
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today & Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day One

Day 2:	Monday 21st of October 2024
--------	-----------------------------

- w,	
	Piping & Pipeline Materials & Equipment
0730 – 0930	Overview of Ferrous Pipe & Pipeline Materials • Carbon & Alloy Steels •
	Practical Aspects of Metallurgical Properties • Chemistry & Material Test
	Reports
0930 - 0945	Break

0945 - 1100	Piping & Pipeline Materials & Equipment (cont'd)Fabrication of Line Pipe & Forged Fittings ● Mechanical Properties: Strength& Toughness ● Ductile & Brittle Fracture ● API 5L & ASTM MaterialSpecifications ● Markings on Pipe & Fittings
1100 – 1230	Piping Vibration Measurement, Analysis & Corrective Action Flow Induced Vibration & Slug Flow (water hammer) • Surge (Pressure Wave Water Hammer) • Piping Vibration Involving Control Valves • Other Sources of Vibration
1230 - 1245	Break
1245 – 1420	Piping Vibration Measurement, Analysis & Corrective Action (cont'd) Practical Methods for Evaluating Piping Vibration ● How to Measure Vibration ● How to Analyze Vibration & Decide if it is Acceptable
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today & Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3: Tuesday 22nd of October 2024

Day 3.	Tuesday 22 Of October 2024
0730 - 0930	Piping Vibration Measurement, Analysis & Corrective Action (cont'd)
	Options for Resolving Vibration • Acceptance Criteria (ASME B31 Series) •
	Methods of Piping Vibration Damping • Simple Piping Vibration Problems •
	Case Studies • Open Session with Student Vibration Problems • Vibration
	Simulator
0930 - 0945	Break
0945 - 1100	Examination, Inspection & Testing
	Weld Inspection Techniques • Liquid Penetrant Testing: Advantages &
	Limitations • Magnetic Particle Testing: Advantages & Limitations •
	Radiographic Testing: Advantages & Limitations • Ultrasonic Testing:
	Advantages & Limitations • Eddy Current, Acoustic Emission,
	Thermography
1100 – 1230	Examination, Inspection & Testing (cont'd)
	Pulsed Eddy Current Inspections Through Insulation • Pigging Technology:
	Overview of Utility & Smart Pigs • Overview of 49CFR Regulations for In-
	Line Inspections • What to Inspect & How • Workmanship Standards
	(ASME B31) • Integrity Standards (B31G, API 1104, API 579) •
	Application of Inspections & Analysis of Results
1230 – 1245	Break
1245 - 1420	Pressure & Leak Testing
	The Difference Between Leak Testing & Pressure Testing • Review of
	Different Testing Techniques • The Purpose of Hydrostatic Test • How to
	Conduct a Hydrostatic test • Pipeline & Piping Systems Testing •
	Pneumatic Testing
	Recap
1420 - 1430	<i>Using this Course Overview, the Instructor(s) will Brief Participants about the</i>
	<i>Topics that were Discussed Today & Advise Them of the Topics to be Discussed</i>

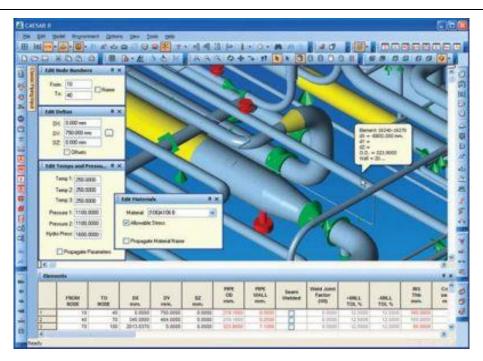
	Tomorrow
1430	Lunch & End of Day Three

Wednesday 23rd of October 2024 Dav 4:

Day 4.	Wednesday 25 Of October 2024
0730 - 0930	Degradation Mechanisms
	Introduction to Practical Corrosion • Classification of Corrosion Mechanisms
	• General Wall Thinning • Local Corrosion: Galvanic Effects • Crevice
	Corrosion • Pitting Corrosion
0930 - 0945	Break
0945 - 1100	Degradation Mechanisms (cont'd)
	Environmental Effects • Hydrogen & H2S Effects • Microbiological
	Corrosion • Corrosion Control & Protection • Cathodic Protection Overview
1100 - 1230	Operation & Maintenance Strategies & Procedures
	Fundamentals of Maintenance Practice • Corrective & Predictive
	Maintenance
1230 - 1245	Break
1245 - 1420	Operation & Maintenance Strategies & Procedures (cont'd)
	Reliability Engineering: Maintenance Analysis & Trending
	Recap
1420 – 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today & Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Four

Thursday 24th of October 2024 Dav 5:

Day 5:	Thursday 24" of October 2024
0730 - 0930	Fitness-for-Service & Remaining Life Overview
	Making Run-or-Repair Decisions • Analysis of Inspection Results: Integrity
	Management • How to Evaluate Wall Thinning • Application of ASME
	B31G to Determine Remaining Life
0930 - 0945	Break
0945 - 1100	Fitness-for-Service & Remaining Life Overview (cont'd)
	Application of API 579 to General & Local Corrosion • Application of API 579
	to Analyze Pitting • Analysis of Dents & Gouges in Pipelines • Introduction
	to Fracture Mechanic • How to Evaluate Cracks in Piping & Pipelines
1100 – 1230	Repair Techniques
	The New ASME Repair Standards • The Fundamentals of Repair Packages •
	Welding on Line (In-Service) • Pipe & Component Replacement • Grinding &
	Welding • Welded Sleeve: Type A & Type B • Flush Patch Repair • Fillet
	Welded Patch • Weld Overlay Repair • Mechanical Clamp with Sealant
	Injection • Mechanical Clamp without Sealant Injection • Insertion Liners •
	Painted & Brushed Liners ● Pipe Coating
1230 – 1245	Break
1245 – 1345	System Integrity
	Pipeline Failure, Overpressure • Pipeline Life Extension • System Integrity
	of Gas Pipelines • Risk-based Inspections • Pipeline Integrity Management •
	CAESAR II
	Course Conclusion
1345 - 1400	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course



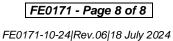
Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the state-of-the-art simulators "CAESAR II" and "iLearnVibration".

CAESAR II

iLearnVibration Simulator

Course Coordinator


Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

