

COURSE OVERVIEW FE0330 Metallurgy for the Non-Metallurgist

<u>Course Title</u> Metallurgy for the Non-Metallurgist

Course Date/Venue

November 11-15, 2024/TBA Meeting Room, The Tower Plaza Hotel, Dubai, UAE

CEUS

Course Reference FE0330

<u>Course Duration/Credits</u> Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide delegates

with a detailed and up-to-date overview of metallurgy for the non-metallurgist. It covers the unique physical characteristics of metals including the reasons that metals behave differently from non-metals such as plastics, glass, wood, etc.; the selection of different metals for specific engineering applications; how metals are alloyed to achieve desired properties; how steel is heat-treated to achieve various combinations of strength and ductility; and how metals are formed into the components that are used in our most important engineered machines and structures.

During this interactive course, participants will learn on how to test metals to determine critical properties such as strength, ductility and toughness; and why metals corrode, why different metals behave differently in corrosive environments and how the corrosion of metals can be controlled.

FE0330 - Page 1 of 7

FE0330-11-24|Rev.82|24 September 2024

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Gain a good knowledge in metallurgy science and use the terminologies and expressions of professional metallurgists
- Recognize the unique physical characteristics of metals including the reasons that metals behave differently from non-metals such as plastics, glass, wood, etc.
- Select different metals for specific engineering applications
- Explain how metals are alloyed to achieve desired properties .
- Identify how steel is heat-treated to achieve various combinations of strength and ductility
- Distinguish how metals are formed into the components that are used in our most important engineered machines and structures
- Test metals to determine critical properties such as strength, ductility and toughness
- Illustrate why metals corrode, why different metals behave differently in corrosive environments and how the corrosion of metals can be controlled

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes electronic version of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a Tablet PC.

Who Should Attend

This is an ideal first course for those who need a working understanding of metals and their applications. It has been designed for those with no previous training in metallurgy, such as technical, laboratory, and sales personnel; engineers from other disciplines; management and administrative staff; and non-technical support staff such as purchasing and receiving agents who order and inspect incoming material.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

- 20% Practical Workshops & Work Presentations
- Hands-on Practical Exercises & Case Studies 30%
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

FE0330 - Page 2 of 7

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

<u>Accommodation</u>

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

FE0330 - Page 3 of 7

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. George Poulos, MBA, MSc, BSc, CEng, is a Senior Corrosion & Metallurgical Engineer with over 45 years of extensive experience within the Oil & Gas, Petrochemical, Refinery, Construction, Aircraft & Shipbuilding Industry. His wide experiences cover in the areas of Corrosion and Metallurgy, Metallurgical Failure, Metallurgy & Metallurgical Processes, Metallurgical Lab, Steel Metallurgy, Corrosion in Urea & Ammonia Plants, Analysis & Prevention, Corrosion Fabrication & Inspection, Fabrication & Repair, Corrosion

Prevention, Corrosion Engineering, Corrosion Control, Corrosion Inhibition, **Corrosion** Management in Process Operations, **Corrosion** & Prevention of Failures, Pressure Vessels, Piping Inspection, Risk-Based Inspection, Fitness-for-Service (FFS), Material Selection, Cathodic Protection Systems, Steel Structure Welding, Steelmaking Slag, Steel Making Application, Steel Making Process, Steel Manufacturing, Steel Forging, Steel Manufacturing & Process Troubleshooting, Hot Rolling Process, Hot Strip Mill, Mill Operations, Roll Mill, Electric Arc Furnace (EAF), Slit Rolling, Carbon Steel Pipe Wall Thickness & Grade Selection, Ferro-Alloys, Heat Treatment & Prevention Techniques and Post Weld Heat Treatment. Further, he is also well-versed in Welding Inspection, Welding & Machine Techniques, TIG & Arc Welding, Shielded Metal Arc Welding, Gas Tungsten & Gas Metal Arc Welding, Welding Procedure Specifications & Qualifications, Aluminium Welding, Hot Work-Safety, SMAW, GTAW, Welding Techniques, Pipeline Welding Practices, Welding Engineering, Welding Fatigue & Fracture Mechanics, Welding Inspection Technology, Welding Safety, Welding Defects Analysis, Welding Technology, Welding Problems, Welding & Non Destructive Testing and **Metallurgy Techniques**.

During his career life, Mr. Poulos has gained his practical and field experience through his various significant positions and dedication as the **Chief Executive**, **Head of Technical Studies**, **Manager**, **Senior Consultant**, **Lead Welding Engineer**, **Senior Welding Engineer**, **Design Engineer**, **Sales Engineer**, **Author**, **Welding Instructor**, **Visiting Lecturer** and **Technical Proposal Research Evaluator** from various international companies such as Greek Welding Institute, Hellenic Quality Forum and International Construction Companies such as Shipbuilding, Aircraft Industry and Oil and Gas Industry.

Mr. Poulos is a **Registered Chartered Engineer** and has a **Master's** degree in **Naval Architecture**, a **Bachelor's** degree in **Welding Engineering** and a Master of Business Administration (**MBA**) from the **Sunderland University**, **Aston University** and **Open University**, **UK**, respectively. Further, he is a **Certified Trainer/Instructor**, an active Member of Chartered Quality Institute (**CQI**), The British Welding Institute (**TWI**), The Royal Institution of Naval Architects (**RINA**) and American Welding Society (**AWS**), a Registered **EWF/IW** (European Welding Federation-International Welding Institute W/E) and an **IRCA** Accredited External Quality Systems Auditor through BVQI. He is an **Author** of Technical Book dealing with Protection/Health/Safety in the Welding/Cutting domain and delivered various trainings, seminars, conferences, workshops and courses globally.

FE0330 - Page 4 of 7

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Monday, 11 th of November 2024
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Introduction & History of Metals
0830 - 0930	Course Overview • What is Metallurgy? • History of Metallurgy •
	Discovery of Metals & Alloys
0930 - 0945	Break
	Introduction & History of Metals (cont'd)
0945 – 1100	First Primitive Refining Techniques • Cultural Significance of Metals •
	Profile & Behavior of Atoms • Upgrading Pure Metals
1100 – 1215	Mechanical Properties & Their Measurement
	Definitions of Mechanical Properties • Testing Procedures
1215 – 1230	Break
1230 - 1420	Mechanical Properties & Their Measurement (cont'd)
	Introduction to Concepts of Standardization & Quality Control.
1420 - 1430	Recap
1430	Lunch & End of Day One

Steels & Cast Irons0730 - 0930A Closer Look at Properties • Profile of Steel • Mechanical Properties of Steel• Physical Properties of Steel • Steel Mill Products0930 - 0945Break0945 - 1100Steels & Cast Irons (cont'd)Selected Applications of Steels & Cast Irons • Profile of Cast Irons • Wear Resistance of Irons & Steels • Producing Castings from Iron & Steel1100 - 1215Getting Metals into Usable Form: Hot Working Forging • Rolling • Extrusion • Swaging • Other Techniques Employed to form Metals at Elevated Temperatures1215 - 1230Break	Day 2:	Tuesday, 12 ^m of November 2024
0730 - 0930 A Closer Look at Properties • Profile of Steel • Mechanical Properties of Steel • Physical Properties of Steel • Steel Mill Products 0930 - 0945 Break 0945 - 1100 Selected Applications of Steels & Cast Irons • Profile of Cast Irons • Wear Resistance of Irons & Steels • Producing Castings from Iron & Steel 1100 - 1215 Getting Metals into Usable Form: Hot Working Forging • Rolling • Extrusion • Swaging • Other Techniques Employed to form Metals at Elevated Temperatures 1215 - 1230 Break		Steels & Cast Irons
 Physical Properties of Steel • Steel Mill Products 0930 - 0945 Break 0945 - 1100 Selected Applications of Steels & Cast Irons • Profile of Cast Irons • Wear Resistance of Irons & Steels • Producing Castings from Iron & Steel 1100 - 1215 Forging • Rolling • Extrusion • Swaging • Other Techniques Employed to form Metals at Elevated Temperatures 1215 - 1230 Break 	0730 – 0930	A Closer Look at Properties • Profile of Steel • Mechanical Properties of Steel
0930 – 0945 Break 0945 – 1100 Steels & Cast Irons (cont'd) 0945 – 1100 Selected Applications of Steels & Cast Irons • Profile of Cast Irons • Wear Resistance of Irons & Steels • Producing Castings from Iron & Steel 1100 – 1215 Getting Metals into Usable Form: Hot Working 1100 – 1215 Forging • Rolling • Extrusion • Swaging • Other Techniques Employed 1215 – 1230 Break		Physical Properties of Steel Steel Mill Products
0945 – 1100 Steels & Cast Irons (cont'd) 0945 – 1100 Selected Applications of Steels & Cast Irons • Profile of Cast Irons • Wear Resistance of Irons & Steels • Producing Castings from Iron & Steel 1100 – 1215 Getting Metals into Usable Form: Hot Working 1100 – 1215 Forging • Rolling • Extrusion • Swaging • Other Techniques Employed 1215 – 1230 Break	0930 - 0945	Break
0945 – 1100 Selected Applications of Steels & Cast Irons • Profile of Cast Irons • Wear Resistance of Irons & Steels • Producing Castings from Iron & Steel 1100 – 1215 Getting Metals into Usable Form: Hot Working 1100 – 1215 Forging • Rolling • Extrusion • Swaging • Other Techniques Employed 1215 – 1230 Break		Steels & Cast Irons (cont'd)
Resistance of Irons & Steels Producing Castings from Iron & Steel Getting Metals into Usable Form: Hot Working 1100 – 1215 Forging Forging Rolling Extrusion Swaging Other Techniques Employed to form Metals at Elevated Temperatures 1215 – 1230 Break	0945 - 1100	Selected Applications of Steels & Cast Irons • Profile of Cast Irons • Wear
Getting Metals into Usable Form: Hot Working1100 – 1215Forging • Rolling • Extrusion • Swaging • Other Techniques Employed to form Metals at Elevated Temperatures1215 – 1230Break		Resistance of Irons & Steels • Producing Castings from Iron & Steel
1100 – 1215Forging • Rolling • Extrusion • Swaging • Other Techniques Employed to form Metals at Elevated Temperatures1215 – 1230Break		Getting Metals into Usable Form: Hot Working
to form Metals at Elevated Temperatures 1215 – 1230 Break	1100 – 1215	Forging • Rolling • Extrusion • Swaging • Other Techniques Employed
1215 – 1230 Break		to form Metals at Elevated Temperatures
	1215 - 1230	Break
Getting Metals into Usable Form: Cold Working		Getting Metals into Usable Form: Cold Working
1230 – 1420 Rolling • Stamping • Coining • Spinning • Other Techniques to form	1230 - 1420	Rolling • Stamping • Coining • Spinning • Other Techniques to form
Metals at Ambient Temperatures		Metals at Ambient Temperatures
1420 – 1430 Recap	1420 - 1430	Recap
1430 Lunch & End of Day Two	1430	Lunch & End of Day Two

Day 3:	Wednesday, 13 th of November 2024
0730 - 0930	<i>Joining</i> Welding • Brazing • Soldering
0930 - 0945	Break

FE0330 - Page 5 of 7

FE0330-11-24|Rev.82|24 September 2024

0945 - 1100	Joining (cont'd) Applications
1100 – 1215	<i>Heat Treatment of Steel</i> <i>Hardness</i> • <i>Hardenability</i> • <i>Specific Processes & their Applications</i>
1215 – 1230	Break
1230 - 1420	<i>Heat Treatment of Steel (cont'd)</i> <i>Heat Treating Procedures</i> • <i>Heat Treating Equipment</i> • <i>Quenchants</i> • <i>Hardness Measurements</i>
1420 - 1430	Recap
1430	Lunch & End of Day Three

Day 4:	Thursday, 14 th of November 2024
0730 - 0930	Nonferrous Metals & Alloys: Industrial Applications & Properties
	Light Metals • Copper & its Alloys • Lead, Tin, & Zinc • Precious Metals
0930 - 0945	Break
0945 - 1100	Nonferrous Metals & Alloys: Strengthening Mechanisms
	Techniques to Harden Nonferrous Metals • Age Hardening • Strain
	Hardening • Related Concepts
	Corrosion & Corrosion Prevention
1100 – 1215	Causes of Corrosion • Environmental Factors • Temperature-Induced
	Failures
1215 – 1230	Break
1230 - 1420	Corrosion & Corrosion Prevention (cont'd)
	Techniques for Minimizing Corrosion
1420 - 1430	Recap
1430	Lunch & End of Day Four

Day 5:	Friday, 15 th of November 2024
	Quality Control & Failure Analysis
0730 - 0930	Procedures for Predicting & / or Evaluating the Performance of Metals in
	Service • Failure Mechanisms
0930 - 0945	Break
0045 1100	Quality Control & Failure Analysis (cont'd)
0945 - 1100	Testing & Inspection
	Materials Characterization & the Selection Process
1100 – 1215	Designation Systems for Classes of Metals and Alloys • Standards &
	Specifications • Selection Factors
1215 – 1230	Break
	Materials Characterization & the Selection Process (cont'd)
1230 - 1345	Comparison of Polymers & Ceramics Related to Metals • Case Studies of
	Material Selection Problems
1345 – 1400	Course Conclusion
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

FE0330 - Page 6 of 7

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

FE0330 - Page 7 of 7

