

COURSE OVERVIEW PE0100 Process Plant Optimization & Energy Conservation

Course Title

Process Plant Optimization & Energy Conservation

Course Date/Venue

September 22-26, 2024/SAS Meeting Room, Holiday Inn Muscat al Seeb, an IHG Hotel, Muscat, Oman

Course Reference

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

In a typical processing plant, such as a petrochemical plant or oil refinery, there are hundreds and even thousands of control loops. Each control loop is responsible for controlling one part of the process, such as maintaining a temperature, level or flow. If the control loop is not properly designed and tuned, the process runs below its optimum. The process will be more expensive to operate, and equipment will wear out prematurely. For each control loop to run optimally, identification of sensor, valve, and tuning problems is important. It has been well documented that over 35% of control loops typically have problems.

Process plant optimization is the set of adjustments of the various processes in order to optimize some specified set of parameters without violating some constraints. The most common goals are minimizing cost and maximizing throughput and efficiency. When optimizing a process, the goal is to maximize one or more of the process specifications, while keeping all others within their constraints. This can be done by using a process mining tool, discovering the critical activities and bottlenecks, and acting only on them.

PE0100 - Page 1 of 8

PE0100-09-24|Rev.483|12 July 2024

Process plant optimization involves evaluating every process and interaction in order to determine the best possible outcome. It includes the optimization of process equipment, operating procedure and control systems. This can result in improved flexibility, modernization and the best use of equipment, improved automation, decreased production time, and increased innovation.

The aim of this course is to provide participants with a complete and up-to-date overview of process plant optimization. Upon the successful completion of this course, participant will gain a satisfactory understanding of the concepts of optimization fundamentals, process plant design optimization, process plant planning optimization, process plant operations optimization, process controls, optimizing reliability, optimizing offsite operations, continuous improvement and integrated supply chain optimization. Actual case studies from around the world will be demonstrated to highlight the topics discussed.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on process plant optimization technology and continuous improvement
- Define and identify the basic optimization fundamentals and tools
- Illustrate breakeven analysis, graphical methods, numerical methods, incremental methods, linear programming, quadratic programming and non-linear optimization techniques
- Describe global and local optima, design optimization, NP maximization and configuration optimization
- Discuss integer programming, capacity creep and plant debottlenecking as well as optimize operations planning, unit performance and process operations
- Explain linear programs and non-linear models, scheduling by parameters for optimization, crude unit cut points, reformer severity, FCC conversion and other key parameters
- Integrate unit performance, describe the utilities and process controls and differentiate analogue controls versus digital controls as well as feed-back versus feed-forward controls
- Determine DCS and advanced controls, process analyzers, off-line optimization, multivariable process control and inferential controls and differentiate dynamic versus steady-state
- Discuss statistical process control, optimizing reliability, RCFA logic diagrams and fault trees, turnaround planning, materials inventory management, management and information systems
- Employ risk management and optimization, offsite operations optimization, offsites design, storage facilities operation, utilities management, inventory management, blending optimization and continuous improvement
- Acquire knowledge on the elements in supply chain, lean manufacturing, kaisan and six sigma, benchmarking and best practices
- Distinguish the difference between plant optimization versus supply chain optimization and discuss the summary of refinery and process plant optimization

PE0100 - Page 2 of 8

PE0100-09-24|Rev.483|12 July 2024

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspect and considerations of process plant optimization technology and continuous improvement for managers, leaders, section heads, superintendents, supervisors, process engineers, production engineers, plant engineers and planning engineers.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures20% Practical Workshops & Work Presentations30% Hands-on Practical Exercises & Case Studies20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

PE0100 - Page 3 of 8

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:

• The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

• BAC

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

PE0100 - Page 4 of 8

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Mervyn Frampton is a Senior Process Engineer with over 30 years of industrial experience within the Oil & Gas, Refinery, Petrochemical and Utilities industries. His expertise lies extensively in the areas of Process Troubleshooting, Distillation Towers, Fundamentals of Distillation for Engineers, Distillation Operation and Troubleshooting, Advanced Distillation Troubleshooting, Distillation Technology, Vacuum Distillation, Distillation Column Operation & Control, Oil Movement Storage &

Troubleshooting, Process Equipment Design, Applied Process Engineering Elements, Plant Optimization, Revamping & Debottlenecking, Process Process Plant Troubleshooting & Engineering Problem Solving, Process Plant Monitoring, Catalyst Selection & Production Optimization, Operations Abnormalities & Plant Upset, Process Plant Start-up & Commissioning, Clean Fuel Technology & Standards, Flare, Blowdown & Pressure Relief Systems, Oil & Gas Field Commissioning Techniques, Pressure Vessel Operation, Gas Processing, Chemical Engineering, Process Reactors Start-Up & Shutdown, Gasoline Blending for Refineries, Urea Manufacturing Process Technology, Continuous Catalytic Reformer (CCR), De-Sulfurization Technology, Advanced Operational & Troubleshooting Skills, Principles of Operations Planning, Rotating Equipment Maintenance & Troubleshooting, Hazardous Waste Management & Pollution Prevention, Heat Exchangers & Fired Heaters Operation & Troubleshooting, Energy Conservation Skills, Catalyst Technology, Refinery & Process Industry, Chemical Analysis, Process Plant, Commissioning & Start-Up, Alkylation, Hydrogenation, Dehydrogenation, Isomerization, Hydrocracking & De-Alkylation, Fluidized Catalytic Cracking, Catalytic Hydrodesulphuriser, Kerosene Hydrotreater, Thermal Cracker, Catalytic Reforming, Polymerization, Polyethylene, Polypropylene, Pilot Water Treatment Plant, Gas Cooling, Cooling Water Systems, Effluent Systems, Material Handling Systems, Gasifier, Gasification, Coal Feeder System, Sulphur Extraction Plant, Crude Distillation Unit, Acid Plant Revamp and Crude Pumping. Further, he is also well-versed in HSE Leadership, Project and Programme Management, Project Coordination, Project Cost & Schedule Monitoring, Control & Analysis, Team Building, Relationship Management, Quality Management, Performance Reporting, Project Change Control, Commercial Awareness and Risk Management.

During his career life, Mr. Frampton held significant positions as the **Site Engineering Manager**, **Senior Project Manager**, **Process Engineering Manager**, **Project Engineering Manager**, **Construction Manager**, **Site Manager**, **Area Manager**, **Procurement Manager**, **Factory Manager**, **Technical Services Manager**, **Senior Project Engineer**, **Process Engineer**, **Project Engineer**, **Assistant Project Manager**, **Handover Coordinator** and **Engineering Coordinator** from various international companies such as the **Fluor Daniel**, **KBR** South Africa, **ESKOM**, MEGAWATT PARK, CHEMEPIC, PDPS, CAKASA, **Worley Parsons**, Lurgi South Africa, **Sasol**, **Foster Wheeler**, **Bosch** & **Associates**, **BCG** Engineering Contractors, Fina Refinery, Sapref Refinery, Secunda Engine Refinery just to name a few.

Mr. Frampton has a **Bachelor's degree** in **Industrial Chemistry** from **The City University** in **London**. Further, he is a **Certified Instructor/Trainer**, a **Certified Internal Verifier/Trainer/Assessor** by the **Institute of Leadership & Management (ILM)** and has delivered numerous trainings, courses, workshops, conferences and seminars internationally.

PE0100 - Page 5 of 8

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Sunday, 22 nd of September 2024
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0845	Optimization Fundamentals
0845 - 0900	Definitions & Basic Optimization Tools
0900 - 0930	Breakeven Analysis
0930 - 0945	Break
0945 – 1000	Graphical Solutions
1000 - 1030	Numerical Methods
1030 – 1100	Incremental Method
1100 – 1130	Linear Programming (LP)
1130 – 1200	Quadratic Programming (QP)
1200 – 1230	Non-Linear Optimization Techniques
1230 – 1245	Break
1245 – 1300	Global & Local Optima
1300 - 1315	Optimizing the Design
1315 – 1330	Maximizing NP
1330 - 1345	Configuration Optimization
1345 – 1400	Integer Programming (IP)
1400 – 1415	Capacity Creep
1415 – 1420	Plant Debottlenecking
1420 – 1430	Recap
1430	Lunch & End of Day One
Day 2:	Monday, 23 rd of September 2024
0730 - 0800	Optimizing Operations Planning
0800 - 0830	Linear Programs (LP) & Non-Linear Models

0730 - 0800	Optimizing Operations Flumming
0800 - 0830	Linear Programs (LP) & Non-Linear Models
0830 - 0900	Optimizing Unit Performance
0900 - 0930	Scheduling
0930 - 0945	Break
0945 - 1015	Optimizing Process Operations
1015 – 1045	Key Parameters for Optimization
1045 - 1115	Crude Unit Cut Points
1115 – 1200	Reformer Severity
1200 – 1215	Break
1215 – 1245	FCC Conversion
1245 - 1315	Other Key Parameters
1315 – 1345	Integrating Unit Performance
1345 – 1420	Utilities
1420 - 1430	Recap
1430	Lunch & End of Day Two

PE0100 - Page 6 of 8

ay 3:	Tuesday, 24 th of September 2024
0730 - 0815	Process Controls
0815 – 0900	Analogue Controls versus Digital Controls
0900 - 0930	Feed-back & Feed-forward Controls
0930 - 0945	Break
0945 - 1030	DCS (Distributed Control Systems) & Advanced Controls
1030 - 1115	Process Analyzers
1115 – 1200	Off-line Optimization
1200 – 1230	Real Time Online Optimization
1230 – 1245	Break
1245 - 1315	Multivariable Process Control & Inferential Controls
1315 - 1345	Dynamic versus Steady-State
1345 – 1420	Statistical Process Control
1420 – 1430	Recap
1430	Lunch & End of Day Three
ay 4:	Wednesday, 25 th of September 2024
0730 - 0800	Optimizing Reliability
0800 - 0830	Root Cause Failure Analysis
0830 - 0900	Logic Diagrams & Fault Trees
0900 - 0930	Logic Diagrams of Fault Frees Turnaround Planning
0930 - 0945	Break
0930 - 0945 0945 - 1015	
	Materials Inventory Management
1015 - 1100	Management & Enterprise Information Systems
1100 - 1130	Risk Management & Optimization
1130 - 1200	Optimizing Offsites Operations
1200 - 1215	Break
1215 – 1245	Offsites Design
1245 - 1315	Storage Facilities Operation
1315 - 1345	Utilities Management
1345 - 1415	Inventory Management
1415 – 1420	Blending Optimization
1420 - 1430	Recap
1430	Lunch & End of Day Four
ay 5:	Thursday, 26 th of September 2024
0730 - 0815	Continuous Improvement
0815 - 0900	Lean Manufacturing
0900 - 0915	Break
0915 – 1000	Kaisan & Six Sigma
1000 – 1045	Benchmarking & Best Practices
1045 - 1130	Plant Optimization versus Supply Chain Optimization
1130 – 1200	Elements in Supply Chain
1200 - 1215	Break
1215 - 1330	Summary of Refinery & Process Plant Optimization Trends
1215 - 1330 1330 - 1345	Summary of Refinery & Process Plant Optimization TrendsCrude Unit Optimization Case Study
1215 - 1330 1330 - 1345 1345 - 1400	Summary of Refinery & Process Plant Optimization TrendsCrude Unit Optimization Case StudyCourse Conclusion
1215 - 1330 1330 - 1345 1345 - 1400 1400 - 1415	Summary of Refinery & Process Plant Optimization TrendsCrude Unit Optimization Case StudyCourse ConclusionPOST-TEST
1215 - 1330 1330 - 1345 1345 - 1400	Summary of Refinery & Process Plant Optimization TrendsCrude Unit Optimization Case StudyCourse Conclusion

PE0100-09-24|Rev.483|12 July 2024

<u>Practical Sessions</u> This practical and highly-interactive course includes the following real-life case studies and exercises:-

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

PE0100 - Page 8 of 8

