

COURSE OVERVIEW PE0310-2D Sour Gas Sweetening Units

Course Title

Sour Gas Sweetening Units

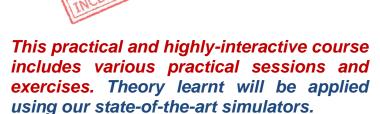
Course Date/Venue

November 03-04, 2024/ Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

(12 PDHs)

Course Reference PE0310-2D

Course Duration/Credits WARI


Two days/1.2 CEUs/12 PDHs

Course Description

Hydrogen sulfide, carbon dioxide, mercaptans and other contaminants are often found in natural gas streams. H₂S is a highly toxic gas that is corrosive to carbon steels. CO₂ is also corrosive to equipment and reduces the Btu value of gas. Gas sweetening processes remove these contaminants so the gas is suitable for transportation and use.

This course presents a complete and up-to-date overview of the Gas Sweetening, Liquid Hydrocarbon Sweetening and Sulphur Recovery with emphasis on gas plant process operations. The process flow sheets of several Sweetening and Sulphur Recovery Processes will be used to illustrate how the various operations differ. The advantages, limitations, and range of applicability of each process will be discussed so that its selection and integration into the overall plant is fully understood and appreciated.

Upon completing this course, you will have a good understanding of Gas Sweetening, Liquid Hydrocarbon Sweetening and Sulphur Recovery. There are many methods that may be employed to remove acidic components (primarily H₂S and CO₂) from hydrocarbon streams. The available methods may be broadly categorized as those depending on chemical reaction, absorption, or adsorption. Processes employing each of these techniques are described. Many of the processes result in acid gas streams that contain H₂S that may be flared, incinerated, injected or fed to a Sulphur Recovery Unit. Various Sulphur Recovery Processes (primarily The Modified Claus Process) are discussed. You will also learn the basic vocabulary unique to the industry.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on gas sweetening and sulphur recovery and identify the safety precautions and the types of contaminants including their effects
- Discuss the concept of process selection as well as the chemical reaction processes used in gas sweetening and sulphur recovery
- Employ systematic methodology of inlet separation and filtration and distinguish their features and importance
- Identify the concept of flash tank and corrosion as applied in gas sweetening and sulphur recovery and acquire knowledge on foaming and materials
- Describe the principles of batch processes, SWS, amines and reclaimer and introduce the topic of liquid redox as applied in gas sweetening and sulphur recovery
- Explain the various physical and combination processes and gain an in-depth knowledge on caustic wash, alkaline process and liquid HC sweetening
- Discuss the amine plant process and modified claus plant as well as their practical application on gas sweetening and sulphur recovery
- Determine the mechanical consideration and process consideration of gas sweetening and sulphur recovery
- Carryout the procedure on re-heating operation as well as instrumentation and degasification and discover their features and functions

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of gas sweetening and sulfur recovery for managers, engineers and other technical staff who are directly involved in gas processing operations.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:-

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **1.8 CEUs** (Continuing Education Units) or **18 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Mervyn Frampton is a Senior Process Engineer with over 30 years of industrial experience within the Oil & Gas, Refinery, Petrochemical and Utilities industries. His expertise lies extensively in the areas of Process Troubleshooting, Distillation Towers, Fundamentals of Distillation for Engineers, Distillation Operation and Troubleshooting, Advanced Distillation Troubleshooting, Distillation Technology, Vacuum Distillation, Distillation Column Operation & Control, Oil Movement

Storage & Troubleshooting, Process Equipment Design, Applied Process Engineering Elements, Process Plant Optimization, Revamping & Debottlenecking, Process Plant Troubleshooting & Engineering Problem Solving, Process Plant Monitoring, Catalyst Selection & Production Optimization, Operations Abnormalities & Plant Upset, Process Plant Start-up & Commissioning, Clean Fuel Technology & Standards, Flare, Blowdown & Pressure Relief Systems, Oil & Gas Field Commissioning Techniques, Pressure Vessel Operation, Gas Processing, Chemical Engineering, Process Reactors Start-Up & Shutdown, Gasoline Blending for Refineries, Urea Manufacturing Process Technology, Continuous Catalytic Reformer (CCR), De-Sulfurization Technology, Advanced Operational & Troubleshooting Skills, Principles of Operations Planning, Rotating Equipment Maintenance & Troubleshooting, Hazardous Waste Management & Pollution Prevention, Heat Exchangers & Fired Heaters Operation & Troubleshooting, Energy Conservation Skills, Catalyst Technology, Refinery & Process Industry, Chemical Analysis, Process Plant, Commissioning & Start-Up, Alkylation, Hydrogenation, Dehydrogenation, Isomerization, Hydrocracking & De-Alkylation, Fluidized Catalytic Cracking, Catalytic Hydrodesulphuriser, Kerosene Hydrotreater, Thermal Cracker, Catalytic Reforming, Polymerization, Polyethylene, Polypropylene, Pilot Water Treatment Plant, Gas Cooling, Cooling Water Systems, Effluent Systems, Material Handling Systems, Gasifier, Gasification, Coal Feeder System, Sulphur Extraction Plant, Crude Distillation Unit, Acid Plant Revamp and Crude Pumping. Further, he is also well-versed in HSE Leadership, Project and Programme Management, Project Coordination, Project Cost & Schedule Monitoring, Control & Analysis, Team Building, Relationship Management, Quality Management, Performance Reporting, Project Change Control, Commercial Awareness and Risk Management.

During his career life, Mr. Frampton held significant positions as the **Site Engineering** Manager, **Senior Project Manager**, **Process Engineering Manager**, **Project Engineering Manager**, **Construction Manager**, **Site Manager**, **Area Manager**, **Procurement Manager**, **Factory Manager**, **Technical Services Manager**, **Senior Project Engineer**, **Process Engineer**, **Project Engineer**, **Assistant Project Manager**, **Handover Coordinator** and **Engineering Coordinator** from various international companies such as the **Fluor Daniel**, **KBR** South Africa, **ESKOM**, MEGAWATT PARK, CHEMEPIC, PDPS, CAKASA, **Worley Parsons**, Lurgi South Africa, **Sasol**, **Foster Wheeler**, **Bosch** & **Associates**, **BCG** Engineering Contractors, Fina Refinery, Sapref Refinery, Secunda Engine Refinery just to name a few.

Mr. Frampton has a **Bachelor's degree** in **Industrial Chemistry** from **The City University** in **London**. Further, he is a **Certified Instructor/Trainer**, a **Certified Internal Verifier/Trainer/Assessor** by the **Institute of Leadership & Management (ILM)** and has delivered numerous trainings, courses, workshops, conferences and seminars internationally.

Course Program

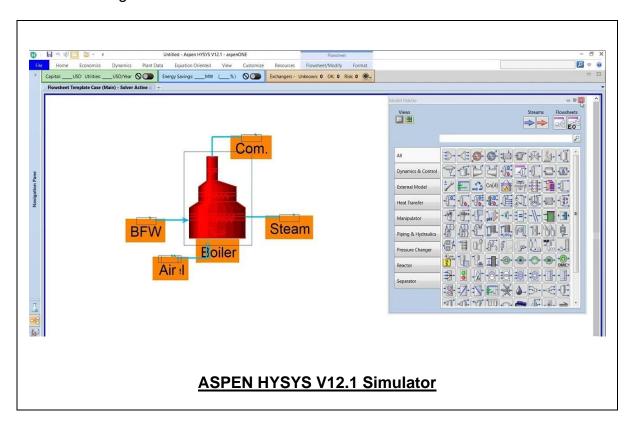
The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Sunday, 03rd of November 2024

Day 1:	Sunday, 03° of November 2024
0730 - 0800	Registration & Coffee
0800 - 0810	Welcome & Introduction
0810 - 0820	PRE-TEST
0820 - 0830	Terminology
0830 - 0840	Safety Precautions
0840 - 0900	Types of Contaminants
0900 - 0920	Process Selection
0920 - 0930	Chemical Reaction Processes
0930 - 0945	Break
0945 - 1000	General Considerations
1000 - 1030	Inlet Separation
1030 - 1100	Filtration
1100 - 11130	Flash Tank
1130 - 1230	Corrosion
1230 - 1245	Break
1245 - 1330	Foaming, Material
1330 - 1345	Batch Processes, SWS, Amines & Reclaimer
1345 - 1400	Liquid Redox
1400 - 1420	Physical Process
1420 - 1430	Recap
1430	Lunch & End of Day One

Day 2: Monday, 04th of November 2024

Day Z.	Monday, 04 of November 2024
0730 - 0800	Combination Process
0800 - 0815	Caustic Wash
0815 - 0830	Alkaline Process
0830 - 0845	Case Study
0845 - 0930	Liquid HC Sweetening
0930 - 0945	Break
0945 - 1000	Case Study - Amine Plant Process
1000 - 1015	Amine Plant Process
1015 - 1030	Modified Claus Plant
1030 - 1100	Mechanical Consideration
1100 - 1130	Process Configuration
1130 - 1200	Re-Heating Operation
1200 - 1230	Instrumentation, Degassification
1230 – 1245	Break
1245 - 1345	Case Study – Tail Gas Clean-up
1345 - 1400	Course Conclusion
1400 - 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course



Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the "ASPEN HYSYS" simulator.

Course Coordinator

Jaryl Castillo, Tel: +974 4423 1327, Fax: +974 4423 1100, Email: jaryl@haward.org

