

COURSE OVERVIEW DE1011-4D ERD Drilling & Stuck Pipe Prevention

Course Title

ERD Drilling & Stuck Pipe Prevention

Course Date/Venue

October 14-17, 2024/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

Course Reference
DE1011-4D

Course Duration/Credits

Four days/2.4 CEUs/24 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with an up-to-date overview of ERD drilling and stuck pipe prevention. It covers the downhole forces including solid induced / formation collapse; the rock mechanics, mobile formation, fractured and faulted formation, naturally induced over-pressured shale collapse, reactive formation, poor hole cleaning and tectonically stressed formation problem prevention; the cavings versus drilling cuttings covering rock strength and brittleness, effects of increasing inclination and differing BHA's, borehole tortuosity data and interpretation, bridging and packing-off drilling fluids; the common causes of stuck; the various methods used in freeing differentially stuck pipe; and the drilling fluids optimization and selection of fluid type.

During this interactive course, participants will learn the mechanical and wellbore geometry sticking and how and why it happens; the effects of hole size, inclination, mud weight and plastic; the warning signs when circulating, tripping in, tripping out, running casing, making connections and reaming; the prevention of stuck pipe and fishing for parted pipe; the drill-string failures; the milling operations and milling applications; and the secondary freeing procedures including procedures for spotting pills and handling accelerators.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on ERD drilling and stuck piping prevention
- Discuss downhole forces including solid induced / formation collapse
- Describe rock mechanics, mobile formation, fractured and faulted formation, naturally induced over-pressured shale collapse, reactive formation, poor hole cleaning and tectonically stressed formation problem prevention
- Explain cavings versus drilling cuttings covering rock strength and brittleness, effects of increasing inclination and differing BHA's, borehole tortuosity data and interpretation, bridging and packing-off drilling fluids
- Identify the common causes of stuck and apply various methods used in freeing differentially stuck pipe
- Carryout drilling fluids optimization and selection of fluid type
- Discuss mechanical and wellbore geometry sticking and how and why it happens
- Recognize the effects of hole size, inclination, mud weight and plastic
- Identify the warning signs when circulating, tripping in, tripping out, running casing, making connections and reaming
- Apply prevention of stuck pipe and fishing for parted pipe
- Prevent drill-string failures and perform milling operations and milling applications
- Employ secondary freeing procedures including procedures for spotting pills and handling accelerators

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of ERD drilling and stuck pipe prevention for drilling engineers, senior drilling engineers, drilling superintendents, drilling managers, assistant drillers, drillers, toolpushers, senior tool pushers and service personnel.

Course Fee

US\$ 6,750 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 2.4 CEUs (Continuing Education Units) or 24 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

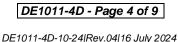
Course Instructor

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Sigve Hamilton, MSc, BSc, is a Senior Drilling & Petroleum Engineer with over 20 years of onshore & offshore experience within the Oil & Gas, Refinery and Petroleum industries. His specialization widely covers in the areas of Advanced Drilling Operation Management, Drilling Fluid Technology, Directional & Horizontal Drilling, Drilling Optimization & Well Planning, Drilling Operation Management, Drilling Control & Operation, Drilling &

Completion Design, Drilling & Stuck Pipe Prevention, Gas Lift Operations, Gas Lift Design & Technology, Production Technology, Production Logging, Well Logging, Well Test Analysis, Well Testing Procedures & Evaluation, Well Performance & Control, Wellhead Operations, Wellhead Design, Tubing Design & Casing, Well Production Optimization, Well Control & Blowout Prevention, Coiled Tubing Technology, Coring & Core Analysis, Core & Log Integration, Core Logging, Carbonate & Seismic Sequence Stratigraphy, Completion & Casing Design, CO2 & Injection System, Fracture Characterization & Modelling, PVT Analysis, Fluid Mechanics, Fluid Dynamics, Water Shutoff, Water Injection Technology, Water Flooding, Petroleum Engineering, Petroleum Geology, Petroleum Physics, Petroleum Data Management, Petroleum Exploration, Reservoir Engineering & Management, Reservoir Simulation, Reservoir Geophysics, Naturally Fractured Reservoir, Streamline Simulation, Carbonate Rocks & Siliciclastic Rocks, Applied Rock Mechanics, Rock Physics, Sedimentology & Sequence Stratigraphy, Special Core Analysis, Artificial Lift Design, Enhanced Oil Recovery, Subsurface Production Operation, Rig Inspection, Logging, Hydraulic & Pneumatic, Heterogeneity Modelling for Reservoir Characterization, Prosper, 3D Geological Modelling, Property & Heterogeneity Modelling, IRAP RMS Streamlines, Grid Design & Upscaling for Reservoir Simulation and MBAL, Prosper and GAP Software,

During his career life, Mr. Hamilton held significant positions and dedication as the Petroleum Engineer, Drilling Engineer, Petroleum/QHSE Engineer, Reservoir Engineer, Field Manager, Laboratory Engineer, Mudlogging Geologist, Geoscientist, Petroleum/Production Engineer & Consultant, Project Engineer/Risk Advisor, Petroleum Consultant/Advisor, Inspector/Study Leader and Senior Instructor/Lecturer from various companies and universities such as the University of Akureyri (UNAK), Stavanger Offshore Technical School, Akademiet, Peteka, FMC Technologies, Gerson Lehrman Group, Ocean Rig, Oilfield Technology Group, Talisman, IOR Chemco, Geoservices, ResLab and Roxar.


Mr. Hamilton has a **Master's** degree in **Petroleum Engineering** and a **Bachelor's** degree in **Reservoir Engineering** from **The University of Stavanger**, **Norway**. Further, he is a **Certified Instructor/Trainer** and delivered numerous trainings, workshops, courses, seminars and conferences internationally.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

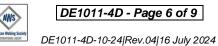
In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Monday, 14th of October 2024

<i>Day</i> 1:	Monday, 14 th of October 2024
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Introduction to Downhole Forces
	Surface / Mudline • Mobile Formation Movement • Fractured Formation
0830 - 0930	Collapse • Reactive Clays & Shales • Tectonic Stress • Overburden Forces •
	Overpressure • Un-Consolidation • Contamination & Fracture • Differential
	Forces
0930 - 0945	Break
0945 - 1100	Solids Induced/Formation Collapse
	Pack-Off Indicators • Bridging Indicators
	The Driller's First Actions on Becoming Stuck
	Rock Mechanics & Problem Prevention: • Mobile Formation Problem
	Prevention • Fractured & Faulted Formation Problem Prevention • Naturally
1100 – 1230	Over-pressured Shale Collapse Problem Prevention • Induced Over-pressured
	Shale Collapse Problem Prevention • Reactive Formation Problem Prevention •
	Poor Hole Cleaning Problem Prevention • Tectonically Stressed Formation
	Problem Prevention
1230 – 1245	Break
1245 - 1420	Cavings Versus Drilled Cuttings
	What Cavings Tell Us • Rock Strength & Brittleness • Effects of Increasing
	Inclination • Effects of Differing BHA's • Borehole Tortuosity Data &
	Interpretation • Bridging • Packing-off Drilling Fluids
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day One


Day 2:	Tuesday, 15 th of October 2024
	Stuck Pipe Mechanisms Objectives
	Observations • The Common Causes of Stuck • Identify the Cause •
	Differential Sticking • Differentially Stuck Pipe • Differentially Sticking
	Spreadsheet • Preventative Action • Methods Used in Freeing Differentially
0730 - 0930	Stuck Pipe • Differential Sticking Force • Using Lubricators • Jarring the Pipe
	Loose • "U" Tube Technique • Differential Sticking Operational Procedures •
	<i>Unconsolidated Formations</i> • <i>Preventative Actions</i> • <i>Filtrate Reducers</i> • <i>Key</i>
	Seat • Surface Jars • Preventive Action • Standard Single Clutch Key Seat
	Wiper • Standard Double Clutch Key Seat Wipe
0930 - 0945	Break
	Drilling Fluids Optimization & Selection of Fluid Type
	Rheology • Gels • Inhibition • Well Bore Stability/Inhibition • Inadequate Hole
0945 - 1100	Cleaning • Mud Lubricity - Torque & Drag Reduction • Filtration
	Control/Differential Sticking • Solids Control Management • Torque & Drag •
	String Torque • Mechanical Torque Factors • Bit Torque
	Mechanical & Wellbore Geometry Sticking How & Why It Happens
	The Driller's First Actions on Becoming Stuck Key Mechanisms & Prevention
1100 - 1230	• Key-seating – & How to Prevent It • Shoe Joint Backs Off – & How to
1100 - 1230	Prevent • Under-gauge Hole – & How to Prevent • Ledges – & How to Prevent
	• Dog-legs - & How to Prevent • Micro Dog-legs - & How to Prevent •
	Collapsed Casing – & How to Prevent
1230 – 1245	Break
	Mechanical & Wellbore Geometry Sticking How & Why It Happens
	(cont'd)
	Green Cement - & How to Prevent • Cement Blocks - & How to Prevent •
1245 - 1420	<i>Junk – & How to Prevent • Optimized Hole Cleaning Key Considerations • The</i>
	Problems Associated with Poor Hole Cleaning • Those Parameters which Assist
	with Hole Cleaning that are Within the Rig Crew's Control • Why Problems
	Increase with Increasing Inclination
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
1420	Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3:	Wednesday, 16 th of October 2024
730 – 0930	Mechanical & Wellbore Geometry Sticking How & Why It Happens (cont'd) Barite Sag General Factors Affecting Hole Cleaning • Rig-Site Monitoring • Vertical & Near Vertical Wells • High Angle & Extended Reach Wells High Angle & Extended Reach Wells & MRC • Characteristics of Cuttings Beds • Flow Regime: Plug Flow, Laminar Flow & Turbulent Flow • Hydraulics • Pills • Drill-string Movement • Back-Reaming • Use of Larger OD Drill Pipe • Circulation Prior to Connections or Tripping • Wiper Trips • Trend Interpolation • Using Hole Cleaning Charts • The Effects of Hole Size, Inclination, Mud Weight, Plastic • Viscosity, Yield Point, ROP Pressure Profiling & Virtual Hydraulics • ECD • Swab & Surge • Hole Cleaning Simulator Exercise for Jarring & Stuck Release • Best Practices Review of Stuck Pipe Mechanism Flow Charts • Warning Signs when Circulating • Warning Signs when Tripping In • Warning Signs when Tripping Out • Warning Signs when Running Casing • Warning Signs when Making Connections • Warning Signs when Reaming
0930 - 0945	Break
0945 – 1100	Prevention of Stuck Pipe During Reaming & Back-reaming • Tripping in Deviated Holes • Connections • MWD Surveys • Drilling Parameter Trends • Running Casing & Liners • Coring • Well Control • Lost Circulation • Air & Foam Drilling • Drilling with Coiled Tubing • Fishing for Junk Best Fishing Procedures • Ways to Fish for Junk • Fishing Magnet • Running Magnets • Weatherford Type P Boot Basket • Finger Catchers • Operation: Core Basket • Core Type Basket • Reverse Circulation/Jet Junk Basket • Venturi Jet Junk Basket • Venturi Jet System • Junk Shot • Poor Boy Basket • Finger Type Shoe • Dimple Type Shoe • Spring Tine Type Shoe • Spring Tine Basket
1100 - 1230	Fishing for Parted Pipe & How the Pipe Parted Causes of Parted Pipe • Planning the Fishing Job • Lead Blocks Parted Pipe • Dress & Catch Fish in Trip • Tapered Mill Guide • Skirted Mill • Bottom Hole Assembly Options • Desirable Characteristics for an Attachment Tool • Screw In • Screw in Accessory • Overshots • Packoffs • Spears & Accessories • Reversing Tool • Taps
1230 – 1245	Break
1245 - 1420	Preventing Drill-string Failures Care of Tubulars • Identify Corrosion • Identifying Galled Threads • Shock, Vibration & Twist-off.
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	<i>Lunch & End of Day Three</i>

Day 4:	Thursday	17th of October 2024	
Dav 4.	i iiui Suav.	17" OI OCIODEI 2024	

Day 4:	Thursday, 17 th of October 2024			
0730 - 0930	Milling Operations & Milling Applications			
	Milling Rotary Speeds • Weight on Mills • Optimizing Cutting Returns •			
	Junk Milling Operations • Mud Conditioning for Milling • How to Read			
	Cuttings • Some Factors that Affect Milling Rates •			
0930 - 0945	Break			
	Milling Operations & Milling Applications (cont'd)			
	What to do About Rubber in the Hole? • Stabilizing the Mill • What to do			
0945 - 1100	About Rough Operation? • Mills • Cone Buster/Flat Bottom Mills • Bladed			
	Mill • Insert Dressed Bladed Junk Mill • Pilot Mill/Lower Connection Type •			
	Milling Rates: Surface Feet/Minute • Bowen Ditch Magnets • Mills Revie			
	Secondary Freeing Procedures			
	Pipe Release Agents • Procedures for Spotting Pills • Acid • Fresh Water Pills			
	• Backing-off • Jars & Accelerators Mechanical & Hydraulic Jars • Types of			
1100 1200	Drilling Jars • Mechanical Jars - Design & How they Work • Hydraulic Jars -			
1100 - 1200	Design & How they Work • Successful Usage • Forces Required to Fire • Jar			
	Firing Force Envelope • Pump-Open Force - What it is; Advantages &			
	Disadvantages • Jar Descriptions • Handling Accelerators • What They are,			
	What They do & How They Work Jar & Accelerator Positioning			
1200 – 1215	Break			
	Secondary Freeing Procedures (cont'd)			
	Key Considerations • Tension Versus Compression • Computer Programs •			
1015 1045	Varying Neutral Point • Considerations Jarring Calculations • Minimum			
1215 – 1345	Overpull • Maximum Overpull • Slack-off • Neutral Point • DC's Above Jars			
	• Down Jarring • Up Jarring • Limits Communications & Teamwork • The			
	Typical Outcomes of Poor Teamwork • Cost to the Industry			
1345 – 1400	Course Conclusion			
	Using this Course Overview, the Instructor(s) will Brief Participants about the			
	Course Topics that were Covered During the Course			
1400 - 1415	POST-TEST			
1415 - 1430	Presentation of Course Certificates			
1430	Lunch & End of Course			

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

