

COURSE OVERVIEW GE0039 Data Analysis

Course Title

Data Analysis

Course Date/Venue

November 03-07, 2024/SAS Meeting Room, Holiday Inn Muscat al Seeb, an IHG Hotel, Muscat, Oman

Course Reference

GE0039

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of Data Analysis. It covers the role of data in operations and production; the data collection techniques, central tendency and variability; visualizing data using histograms, boxplots and scatterplots; the importance of data cleaning, handling missing values and detecting and managing outliers; the right tool for the task using Excel, R, Python and other analytical tools; the relationship of correlation and causation between variables; and the simple linear regression and multiple regression.

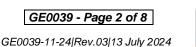
During this interactive course, participants will learn the time series analysis, quality control and statistical process control (SPC) and experimental designing and analysis of variance (ANOVA); the non-parametric statistics and inventory management analysis and supply chain analytics; the demand forecasting, optimization techniques and Lean and Six Sigma analytics; the KPIs for operational excellence and operational metrics for decision making; the machine learning basics and predictive maintenance, production scheduling with data, risk management and scenario analysis; the operational and production reporting and data driven decision making; the advanced topics like Big Data and IoT in production; and the future trends in data analysis for production.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on data analysis
- Identify the role of data in operations and production including the types of data
- Carryout data collection techniques covering surveys, sensors, ERP systems and manual logging and ensure data quality at the source
- Measures central tendency and variability as well as visualize data using histograms, boxplots and scatterplots
- Recognize the importance of data cleaning, identify and handle missing values and detect and manage outliers
- Select the right tool for the task using Excel, R, Python and other analytical tools
- Explain the relationship of correlation and causation between variables and interpret correlation coefficients
- Carryout simple linear regression and multiple regression, assess model fit and make predictions
- Apply time series analysis, quality control and statistical process control (SPC) and experimental design and analysis of variance (ANOVA)
- Recognize non-parametric statistics and apply inventory management analysis and supply chain analytics
- Carryout demand forecasting, optimization techniques and Lean and Six Sigma analytics
- Design KPIs for operational excellence and visualize operational metrics for decision making
- Identify machine learning basics and apply predictive maintenance, production scheduling with data, risk management and scenario analysis
- Use data to guide production decision and enhance efficiency with automated recommendations
- Carryout data visualization, operational and production reporting and data driven decision making
- Discuss advanced topics like Big Data and IoT in production and recognize the future trends in data analysis for production

Exclusive Smart Training Kit - H-STK®


Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of data analysis for business analysts, data analysts, financial analysts, data scientists, researchers, healthcare professionals and IT specialists.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

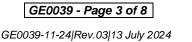
Certificates are accredited by the following international accreditation organizations: -

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.


Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. John Petrus, PhD, MSc, BSc, is a Senior Engineer with over 30 years of onshore & offshore experience within the Oil & Gas, Refinery and Petroleum industries. His wide experience covers in the areas of Data Analysis Techniques, Technical Report Writing, Design Engineering, Detailed Engineering Drawings, Piping & **Process** Equipment, Basis of Engineering & Design Data (BEDD). FEED & Basic Engineering, Pressure Design of Piping, Piping & Pipeline Codes, Piping & Instrumentation Diagrams (P&ID), P&ID

Reading, Engineering Drawings, Codes & Standards, Interpretation & Developing, Drawing Interpretation, Piping System, Water Movement, Water Filtering, Mud Pumping, Sludge Treatment and Drying, Certified Environmental Manager (CEM), Advanced Analytics in Oil & Gas, Business Intelligence Data Analytics, Audit Analytics & Computer-Assisted Audit Techniques (CAATs), Basic Database Concepts & Data Formats, Data Analysis Cycle & Best Practices, Data Importing & Integrity Verification, Advanced Analytics Tools in Auditing, Leveraging Al & Machine Learning in Audits, Data Mining Techniques for Auditors, Data Analytics for Managerial Decision Making, Business Process Analysis, Mapping & Modeling, Research Methods & Analysis, Statistical Data Needs Analysis, Oil & Gas Industry Business Environment & Competitive Intelligence Gathering & Analysis, Petroleum Economics & Risk Analysis, Certified Data Analysis, Risk Management & SWIFT Analysis, Best Practices Management System (BPMS), GIS System Management, Database Management, Strategic Planning, Best Practices and Workflow, Quality Management, Project Management and Risk Assessment & Uncertainty Evaluation. Further, he is also well-versed in seismic interpretation, mapping & reservoir modelling tools like Petrel software, LandMark, Seisworks, Geoframe, Zmap and has extensive knowledge in MSDos, Unix, AutoCAD, MAP, Overlay, Quicksurf, 3DStudio, Esri ArcGIS, Visual Lisp, Fortran-77 and Clipper. Moreover, he is a world expert in analysis and modelling of fractured prospects and reservoirs and a specialist and developer of fracture modelling software tools such as FPDM, FMX and DMX Protocols.

During his career life, Dr. Petrus held significant positions and dedication as the Executive Director, Senior Geoscience Advisor, Exploration Manager, Project Manager, Manager, Chief Geologist, Chief of Exploration, Chief of Geoscience, Senior Geosciences Engineer, Senior Explorationist, Senior Geologist, Geologist, Senior Geoscientist, Geomodeller, Geoscientist, CPR Editor, Resources Auditor, Project Leader, Technical Leader, Team Leader, Scientific Researcher and Senior Instructor/Trainer from various international companies and universities such as the Dragon Oil Holding Plc., ENOC, MENA, ENI Group of Companies, Ocre Geoscience Services (OGS), Burren RPL, Ministry of Oil-Iraq, Eni Corporate University, Standford University, European Universities, European Research Institutes, NorskHydro Oil Company, Oil E&P Companies, just to name a few.

Dr. Petrus has a PhD in Geology and Tectonophysics and Master and Bachelor degrees in Earth Sciences from the Utrecht University, The Netherlands. Further, he is a Certified Instructor/Trainer, a Certified Trainer/Assessor/Internal Verifier by the Institute of Leadership & Management (ILM), a Secretary and Treasurer of Board of Directors of Multicultural Centre, Association Steunfonds SSH/SSR and Founding Member of Sfera Association. He has further published several scientific publications, journals, research papers and books and delivered numerous trainings, workshops, courses, seminars and conferences internationally.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Sunday, 03rd of November 2024

0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	The Role of Data in Operations & Production
0830 - 0930	Why Data Matters: Efficiency, Productivity & Insights • Historical Perspective
	& Current Trends
0930 - 0945	Break
	Understanding Types of Data
0945 - 1030	Continuous versus Categorical Data • Time Series, Cross-Sectional & Panel
	Data
	Data Collection Techniques
1030 - 1130	Surveys, Sensors, ERP systems & Manual Logging • Ensuring Data Quality
	at The Source
	Introduction to Descriptive Statistics
1130 - 1215	Measures of Central Tendency & Variability • Visualizing Data: Histograms,
	Boxplots & Scatterplots
1215 - 1230	Break

1230 - 1330	Importance of Data Cleaning
	Identifying & Handling Missing Values • Outliers: Detection & Management
1330 – 1420	Software Tools Overview
	Introduction to Excel, R, Python & Other Analytical Tools • Selecting the
	Right Tool for the Task
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day One

Monday, 04th of November 2024 Day 2:

Monday, U4" of November 2024
Correlation & Causation
Understanding Relationships Between Variables • Correlation Coefficients &
their Interpretation
Regression Analysis
Simple Linear Regression & Multiple Regression • Assessing Model Fit &
Making Predictions
Break
Time Series Analysis
Components of a Time Series: Trend, Seasonality, Noise • Forecasting
Techniques such as ARIMA
Quality Control & Statistical Process Control (SPC)
Control Charts & their Application in Production • Process Capability
Analysis
Break
Experimental Design & Analysis of Variance (ANOVA)
Designing Controlled Experiments • Analyzing the Impact of Factors on
Production Outcomes
Non-parametric Statistics
Situations Where Normal Distribution Assumptions Don't Hold • Rank-Based
Tests & their Applications
Recap
Using this Course Overview, the Instructor(s) will Brief Participants about the
Topics that were Discussed Today and Advise Them of the Topics to be
Discussed Tomorrow
Lunch & End of Day Two

Tuesday, 05th of November 2024 Day 3:

Day o.	raceady, co or recomber 202 r
0730 – 0830	Inventory Management Analysis
	Economic Order Quantity (EOQ) • Safety Stock Calculations & Reorder
	Points
0830 - 0930	Supply Chain Analytics
	Tracking & Optimizing the Supply Chain • Vendor Performance Analysis
0930 - 0945	Break
0945 – 1100	Demand Forecasting
	Qualitative & Quantitative Forecasting Methods • Accuracy Assessment &
	Forecast Adjustments
1100 – 1215	Optimization Techniques
	Linear Programming & Integer Programming • Application in Production
	Scheduling & Resource Allocation
·	

1215 - 1230	Break
1230 - 1330	Lean & Six Sigma Analytics
	Root Cause Analysis • Data-Driven Waste Elimination
1330 – 1420	Operational KPIs & Dashboards
	Designing KPIs for Operational Excellence • Visualizing Operational Metrics
	for Decision-Making
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4: Wednesday, 06th of November 2024

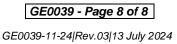
Day 4:	wednesday, Ub" of November 2024
0730 – 0830	Machine Learning Basics
	Supervised versus Unsupervised Learning • Common Algorithms: Regression,
	Classification, Clustering
	Predictive Maintenance
0830 - 0930	Using Data to Predict Equipment Failures • Scheduling Maintenance to
	Minimize Downtime
0930 - 0945	Break
0045 1100	Simulation in Operations
0945 – 1100	Monte Carlo Simulations • Benefits of Simulating Operational Scenarios
	Production Scheduling with Data
1100 – 1215	Data-Driven Approaches to Efficient Scheduling • Addressing Constraints &
	Bottlenecks
1215 - 1230	Break
1230 - 1330	Risk Management & Scenario Analysis
1230 - 1330	Quantifying Operational Risks • Planning for Various Production Scenarios
	Recommendation Systems in Production
1330 – 1420	Using Data to Guide Production Decisions • Enhancing Efficiency with
	Automated Recommendations
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

Thursday, 07th of November 2024 Day 5:

0730 - 0830	Data Visualization PrinciplesImportance of Clear, Impactful Visualizations • Tools & Techniques: Tableau,Power BI, etc.
0830 - 0930	Operational & Production Reporting Structuring Reports for Clarity & Impact • Automating Reporting Processes
0930 - 0945	Break
0945 – 1100	Data-Driven Decision MakingBuilding a Data Culture in Operations & Production • EnhancingCollaboration Between Data Analysts & Operations Teams
1100 – 1230	Advanced Topics: Big Data & IoT in Production Harnessing Large Datasets for Insights • Leveraging IoT Sensors for Real-Time Data Collection

1230 - 1245	Break
	Future Trends in Data Analysis for Production
1245 – 1345	Predictive Trends in the Industry • Preparing for the Future of Data-Driven
	Production
	Course Conclusion
1345 - 1400	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

<u>Practical Sessions</u>
This practical and highly-interactive course includes real-life case studies and exercises:-


<u>Course Coordinator</u> Mari Nakintu, Tel: +971 2 30 91 714, Email: <u>mari1@haward.org</u>

