

COURSE OVERVIEW DE0378 Modelling & Managing Uncertainty in the Subsurface

Course Title

Modelling & Managing Uncertainty in the Subsurface

Course Reference

DE0378

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

H-STK© INCLUDED

Course Date/Venue

Session(s)	Date		Venue		
1	October 13-17, 2024	Boardroom,	Warwick	Hotel	Doha,
2	November 24-28, 2024	Doha, Qatar			,

Course Description

This course is designed to provide participants with a detailed and up-to-date overview of Modelling & Managing Uncertainty in the Subsurface. It covers the types of uncertainty in subsurface modelling comprising of statistical, spatial and model uncertainty; the principles of geostatistics including data acquisition and quality; the difference between deterministic and probabilistic modelling; the advanced geostatistical methods of stochastic modelling; the uncertainty of petrophysical properties; and the statistical sampling and distribution models and seismic data in stochastic models.

During this interactive course, participants will learn the reservoir heterogeneity and uncertainty; the structural modelling, fluid distribution and flow uncertainty; the scenario analysis and sensitivity studies, well test data and machine learning in subsurface modelling; the Monte Carlo simulation and risk analysis; the condition models to dynamic data, history matching and model updating; the proper tools and methods for effective communication; the decision analysis under uncertainty; and the risk management strategies, economic aspects of uncertainty, emerging trends and future directions.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on modelling and managing uncertainty in the subsurface
- Identify the types of uncertainty in subsurface modelling covering statistical, spatial and model uncertainty
- Discuss the principles of geostatistics including data acquisition and quality
- Identify the difference between deterministic and probabilistic modelling
- Carryout advanced geostatistical methods of stochastic modelling and discuss the uncertainty of petrophysical properties
- Illustrate statistical sampling and distribution models and integrate seismic data in stochastic models
- Identify reservoir heterogeneity and uncertainty and illustrate structural modelling, fluid distribution and flow uncertainty
- Carryout scenario analysis and sensitivity studies, integrate well test data and describe machine learning in subsurface modelling
- Apply Monte Carlo simulation and risk analysis, conditioning models to dynamic data, history matching and model updating
- Use proper tools and methods for effective communication and apply decision analysis under uncertainty
- Employ risk management strategies and discuss economic aspects of uncertainty. emerging trends and future directions

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations for modelling and managing uncertainty in the subsurface for geoscientists, petroleum and reservoir engineers, data scientists and project managers needing a practical understanding for modelling and managing uncertainty in the subsurface.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

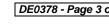
Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC) *BAC

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Accommodation


Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Saad Aljzwe, PhD, MEng, MSc, BSc, is a Senior Petroleum & Reservoir Engineer with over 25 years of practical and academic experience in the areas of Petroleum Economic Analysis, Economic Evaluation. Petroleum Risk Analysis & Decision Making. Agreement. **Exploration Production** Sharing Agreements. Multidisciplinary Research. **Economics** & Property Evaluation, Conventional & Unconventional Oil & Gas Reserves Estimation,

Reservoir Management, Reservoir Engineering, Reservoir Performance Analysis, Oil Fields Subsurface Assessment & Forecasting, Casing Design, Drilling & Workover, PVT & Core Analysis, Production Operations, EOR/IOR, Field Development Design & Evaluation, Miscible Gas Injection (CO2 Injection) Design & Evaluation, Special Core Analysis & Formation Evaluation, EOR-CO2 Injection, Remaining Gas in Place Estimation, Material Balance Method, Computerized Monitoring & Processing System Design, Magnetic Field Controlling, Comparative Risk Evaluation & Sensitivity Analysis, Critical Production Rate for Bottom Water Coning in the Majed (EE-Pool) Reservoir, Oil Pipeline Black Powder Removal, Oil Field Water Shutoff Treatment Methods, Water-Based Mud Rheological & Fluid Loss Control, Empirical Equation, Water-Flooding Performance, Sandstone Reservoirs, Reservoir Fluid Properties, Mathematical Modelling, Directional Permeability Anisotropy, Drilling Operational Efficiency & Well Cost Reduction, Infill Drilling Program, Drilling Efficiency and Ultra-mud System Optimization. Further, he is also well-versed in various petroleum software such as the MBAL (Reservoir Engineering Toolkit), KAPPA-Saphir (Well Testing), KAPPA-Rubis (Reservoir Simulation), CMG (Reservoir Simulation), Merak Peep (Economic Evaluation and Production Decline Analysis) and Monte Carlo Simulation.

During Dr. Saad's career, he gained his thorough practical experience through several challenging positions such as the Senior Lecturer, Head of Petroleum Engineering Department, Head of Chemical Engineering Department, Head of the Union of Faculty Members, Assistant Professor, Teaching Assistant, Researcher and Academic Coordinator from various international well-renowned companies such as the University of Wyoming, Colorado School of Mines, American University of Ras Al Khaimah, Australian College of Kuwait, Sirt University and Bright Star University of Technology.

Dr. Saad has a PhD and Master's degree in Petroleum Engineering from the University of Wyoming and Colorado School of Mines, USA, respectively as well as Master degrees in Petroleum Economics & Management and Reservoir Geosciences & Engineering from the Instituit Francias du Petrole, France and a Bachelor degree in Petroleum Engineering. Further, he is a Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM) and a member of the American Society of Petroleum Engineering (SPE), Society of Petroleum Resources Economists (SPRE), Association of Professional Engineering of Libya, Libyan Society of Earth Science and the Environment Friends Association of Libya. Moreover, he is an author/co-author and published various research papers in local and international scientific journals and conferences. He has further delivered numerous trainings, courses, workshops, seminars and conferences globally.

Course Fee

US\$ 8,500 per Delegate. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

<u>Course Program</u>
The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

Day I	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introductions
0815 - 0830	PRE-TEST
0830 - 0900	Introduction to Subsurface Modelling: Overview & Significance
0900 - 0930	Types of Uncertainty in Subsurface Modelling: Statistical, Spatial, & Model
	Uncertainties
0930 - 0945	Break
0945 - 1100	Principles of Geostatistics: Basics & Applications in Uncertainty Modelling
1100 - 1230	Data Acquisition & Quality: Impact on Uncertainty
1230 - 1245	Break
1245 - 1330	Deterministic versus Probabilistic Modelling: Differences & Applications
1330 - 1420	Case Studies: Real-World Examples of Uncertainty in Subsurface Models
1420 - 1430	Recap
1430	Lunch & End of Day One

Dav 2

/		
0730 - 0830	Advanced Geostatistical Methods: Kriging, Co-Kriging, & Simulation	
0830 - 0930	Stochastic Modelling: Principles & Techniques	
0930 - 0945	Break	
0945 - 1100	Uncertainty in Petrophysical Properties: Porosity, Permeability, & Saturation	
1100 - 1230	Statistical Sampling & Distribution Models: Techniques for Handling Subsurface Data	
1230 – 1245	Break	
1245 - 1330	Integrating Seismic Data in Stochastic Models: Methods & Challenges	
1330 - 1420	Practical Exercise: Hands-On Session on Stochastic Modelling	
1420 - 1430	Recap	
1430	Lunch & End of Day Two	

Day 3

0730 – 0830	Reservoir Heterogeneity & Uncertainty: Identifying & Modelling
	Heterogeneities
0830 - 0930	Structural Modelling & Uncertainty: Faults, Fractures, & Their Impact
0930 - 0945	Break
0945 - 1100	Fluid Distribution & Flow Uncertainty: Impact on Reservoir Performance
1100 – 1230	Scenario Analysis & Sensitivity Studies: Exploring Different Subsurface
	Scenarios

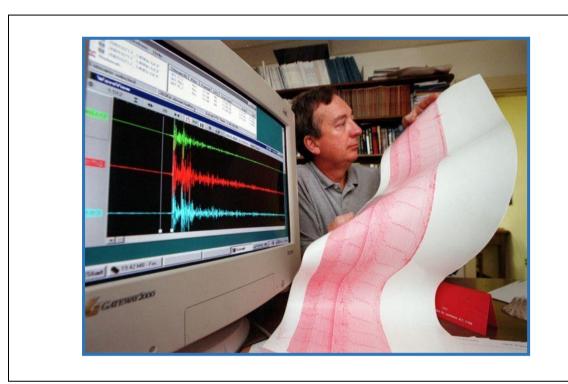
1230 - 1245	Break
1245 - 1330	Integrating Well Test Data: Impact on uncertainty reduction
1330 - 1420	Workshop: Creating Reservoir Models with Varying Uncertainty Parameters
1420 - 1430	Recap
1430	Lunch & End of Day Three

Day 4

0730 - 0830	Machine Learning in Subsurface Modelling: Applications & Potential
0830 - 0930	Monte Carlo Simulation & Risk Analysis: Techniques & Case Studies
0930 - 0945	Break
0945 - 1100	Conditioning Models to Dynamic Data: Real-Time Data Integration
1100 – 1230	History Matching & Model Updating: Balancing Models with Production
	Data
1230 - 1245	Break
1245 - 1330	Visualizing Uncertainty: Tools & Methods for Effective Communication
1330 - 1420	Group Project: Collaborative Uncertainty Modelling Exercise
1420 - 1430	Recap
1430	Lunch & End of Day Four

Day 5

Day 3			
0730 - 0830	Decision Analysis Under Uncertainty: Frameworks & Approaches		
0830 - 0930	Risk Management Strategies: Identifying, Assessing, & Mitigating Risks		
0930 - 0945	Break		
0945 – 1100	Economic Aspects of Uncertainty: Impact on Project Valuation & Investment Decisions		
1100 – 1230	Case Studies in Uncertainty Management: Lessons from Industry		
1230 – 1245	Break		
1245 – 1400	Emerging Trends & Future Directions: Innovations in Uncertainty Modelling.		
1400 - 1415	POST-TEST		
1415 – 1430	Presentation of Course Certificates		
1430	Lunch & End of Course		



Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

<u>Course Coordinator</u>
Jaryl Castillo, Tel: +974 4423 1327, Email: jaryl@haward.org

