

COURSE OVERVIEW PE0263

Fired Heaters, Air Coolers, Heat Exchangers, Pumps, Compressors, **Pressure Vessels & Valves**

Course Title

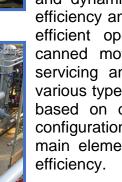
Fired Heaters, Air Coolers, Heat Exchangers, Pumps, Compressors, Pressure Vessels & Valves

Course Date/Venue

February 04-08, 2024/Karatas Meeting Room, Crowne Plaza Istanbul-Harbiye, an IHG Hotel 5 Star, istanbul, Turkey

Course Reference

PE0263


Course Duration/Credits

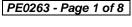
Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide delegates with a detailed and up-to-date overview of fired heaters, air coolers, heat exchangers, pumps, compressors, crude desalter, pressure vessels & valves operations. It covers the objective and equipment layout of process equipment; developing of static and dynamic head in the operating volume of pumps for efficiency and control operation; the affinity laws as tools for efficient operation, pump auxiliaries, wear components, canned motor and magnetic drive pumps, flow pumps, servicing and condition monitoring; the main features of various types of compressors; the compressors classification based on design and application; the types, styles and configurations of centrifugal and axial compressors; and the main elements of centrifugal compressor construction and

During this interactive course, participants will learn the compressor operation; the fin fan cooler including its types, operational efficiency and capacity control; the operation and troubleshooting of cooler; the heaters and their types, construction and operating parameters and inspection/testing requirements; the types and basic parts of furnaces; the fuel gas system of burners, gas burners, oil burners, flame impingement, draft and observations during normal operation; the heat exchangers, process vessels and valves; and the troubleshooting of different equipment and processes.



Course Objectives

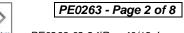
Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on fired heaters, air coolers, heat exchangers, pumps, compressors, crude desalter, pressure vessels & valves operations
- Discuss process equipment including its objective and equipment layout
- Develop static and dynamic head in the operating volume of pumps for efficiency and control operation
- Discuss the affinity laws as tools for efficient operation, pump auxiliaries, wear components, canned motor and magnetic drive pumps, flow pumps, servicing and condition monitoring
- Explain the main features of various types of compressors, classify compressors based on design and application including world standards and codes related to compressor
- Identify the types, styles and configurations of centrifugal compressors and axial compressors
- Explain the main elements of centrifugal compressor construction and analyze centrifugal compressor efficiency
- Employ guidelines for trouble-free centrifugal compressor operation including troubleshooting, inspection and maintenance
- Operate compressor by analysing curves for surge, stall and choke as well as define appropriate equipment for safe operation
- Recognize fin fan cooler including its types, operational efficiency and capacity control
- Operate and troubleshoot cooler through key operational considerations and proper troubleshooting
- Discuss heaters and their types, construction and operating parameters, inspection/testing requirements
- Identify the types and basic parts of furnaces including their efficient operation and air control
- Analyze the fuel gas system of burners, gas burners, oil burners, flame impingement, draft and observations during normal operation
- Differentiate heat exchangers, process vessels and valves
- Troubleshoot different equipment and processes in a professional manner

Who Should Attend

This course provides an overview of an overview of all significant aspects and considerations of operation of process equipment for engineers, design engineers, maintenance staff and other technical staff.

Course Fee


US\$ 6,000 per Delegate + **VAT**. This rate includes Participants Pack (Folder, Manual, Hand-outs, etc.), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

*BAC British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Saleh Aich is a Senior Mechanical & Maintenance Engineer with over 20 years of extensive experience within the Oil & Gas, Petrochemical and Refining industries. His expertise widely covers in of Combustion Techniques. Combustion areas Performance. Pump Operation & Maintenance. Compressor Maintenance & Troubleshooting, Gas Turbine Control & Protection

Systems, Valve Troubleshooting & Maintenance, Vibration Analysis, Oil Analysis, Dry Gas Seals, Packing & Mechanical Seals, Seal Support Systems, Mechanical Seal Failure Analysis & Troubleshooting, Seal Maintenance & Repair, Bearing Care & Maintenance, Couplings & Alignment, Alignment Methods, Troubleshooting Piping & Pipe Support Systems, Heat Exchangers Maintenance & Inspection, Pressure Vessel Design, Fabrication & Testing, Burners, Blowers, Piston & Plunger Gearboxes, Fin-Fans, Separators, Expansion Drums, Filters, Molecule Sieve, Tanks, Root Cause Failure Analysis (RCFA), Computerized Maintenance Fittings, Management System (CMMS), Maintenance Management, Planning & Scheduling Work Management, Parts & Inventory Management, Turnaround & Shutdowns, Condition Monitoring, Regeneration Unit, NGL & Condensate, Furnace Operation & Troubleshooting, Performance Measure & Indicators, Total Productive Maintenance Preventive & Predictive Maintenance Analysis, Rotating Equipment, Machinery & Equipment Failure Analysis, Gas & Steam Turbines, Boilers, Coolers, Diesel & Gas Engines, Heaters, Separators, Storage Tanks, H₂S and ISO 9001:2008 Internal Quality Management System.

During his career life, Mr. Saleh has gained his practical and field experience through his various significant positions and dedication as the Maintenance Instructor, Mechanical Supervisor, Maintenance Engineer, Mechanical Engineer, Contract Engineer, Planning Engineer and Senior Instructor/Lecturer for various multinational companies such as the ADNOC Gas Processing (GASCO), ConocoPhillips and Syrian Gas Company.

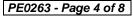
Mr. Saleh has a Bachelor's degree in Mechanical Engineering. Further, he is a Certified Instructor/Trainer and has acquired various certifications and has further delivered numerous training, courses, workshops, seminars and conferences worldwide.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

- 30% Lectures
- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.



Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Sunday, 04th of February 2024

0730 - 0800 Registration & Coffee 0800 - 0815 Welcome & Introduction 0815 - 0830 PRE-TEST Introduction to Process Equipment 0830 - 0930 Process Equipment Objective ◆ Types of Process Plants ◆Process Equipment 0930 - 0945 Break Pumps 0945 - 1100 Development of Static and Dynamic Head in the Operating Volume of Pumps for Efficiency and Control Operation ◆ The Affinity Laws as Tools for Efficient Operation ◆ Pump Auxiliaries Pumps 1100 - 1230 Wear Components ◆ Canned Motor and Magnetic Drive Pumps ◆ High Speed/Low Flow Pumps ◆ Servicing and Condition Monitoring 1230 - 1245 Break Compressor Overview Overview of the Main Features of Various Types of Compressors ◆ Classification of Compressors Based on Design and Application ◆ World Standards and Codes Related to Compressor Design 1420 - 1430 Recap Lunch & End of Day One	Day 1:	Sunday, 04" of February 2024
10815 - 0830 PRE-TEST Introduction to Process Equipment Process Equipment Process Equipment Process Equipment Objective Types of Process Plants Process Equipment Layout Rotating Equipment Stationery Equipment Stationery Equipment Pumps	0730 - 0800	Registration & Coffee
Introduction to Process Equipment Process Equipment Objective ● Types of Process Plants ●Process Equipment Layout ● Rotating Equipment ● Stationery Equipment Break Pumps Development of Static and Dynamic Head in the Operating Volume of Pumps for Efficiency and Control Operation ● The Affinity Laws as Tools for Efficient Operation ● Pump Auxiliaries Pumps (cont'd) Wear Components ● Canned Motor and Magnetic Drive Pumps ● High Speed/Low Flow Pumps ● Servicing and Condition Monitoring 1230 - 1245 Break Compressor Overview Overview of the Main Features of Various Types of Compressors ● Classification of Compressors Based on Design and Application ● World Standards and Codes Related to Compressor Design Recap	0800 - 0815	Welcome & Introduction
0830 - 0930 Process Equipment Objective • Types of Process Plants • Process Equipment Layout • Rotating Equipment • Stationery Equipment Break Pumps Development of Static and Dynamic Head in the Operating Volume of Pumps for Efficiency and Control Operation • The Affinity Laws as Tools for Efficient Operation • Pump Auxiliaries Pumps (cont'd) 1100 - 1230 Wear Components • Canned Motor and Magnetic Drive Pumps • High Speed/Low Flow Pumps • Servicing and Condition Monitoring 1230 - 1245 Break Compressor Overview Overview of the Main Features of Various Types of Compressors • Classification of Compressors Based on Design and Application • World Standards and Codes Related to Compressor Design 1420 - 1430 Recap	0815 - 0830	PRE-TEST
Layout • Rotating Equipment • Stationery Equipment 0930 – 0945 Break Pumps Development of Static and Dynamic Head in the Operating Volume of Pumps for Efficiency and Control Operation • The Affinity Laws as Tools for Efficient Operation • Pump Auxiliaries Pumps (cont'd) Wear Components • Canned Motor and Magnetic Drive Pumps • High Speed/Low Flow Pumps • Servicing and Condition Monitoring 1230 – 1245 Break Compressor Overview Overview of the Main Features of Various Types of Compressors • Classification of Compressors Based on Design and Application • World Standards and Codes Related to Compressor Design Recap		Introduction to Process Equipment
0945 - 1100 Break Pumps Development of Static and Dynamic Head in the Operating Volume of Pumps for Efficiency and Control Operation • The Affinity Laws as Tools for Efficient Operation • Pump Auxiliaries Pumps (cont'd) 1100 - 1230 Wear Components • Canned Motor and Magnetic Drive Pumps • High Speed/Low Flow Pumps • Servicing and Condition Monitoring 1230 - 1245 Break Compressor Overview Overview of the Main Features of Various Types of Compressors • Classification of Compressors Based on Design and Application • World Standards and Codes Related to Compressor Design 1420 - 1430 Recap	0830 - 0930	Process Equipment Objective • Types of Process Plants • Process Equipment
Pumps Development of Static and Dynamic Head in the Operating Volume of Pumps for Efficiency and Control Operation • The Affinity Laws as Tools for Efficient Operation • Pump Auxiliaries Pumps (cont'd) Wear Components • Canned Motor and Magnetic Drive Pumps • High Speed/Low Flow Pumps • Servicing and Condition Monitoring 1230 – 1245 Break Compressor Overview Overview of the Main Features of Various Types of Compressors • Classification of Compressors Based on Design and Application • World Standards and Codes Related to Compressor Design 1420 – 1430 Recap		Layout ● Rotating Equipment ● Stationery Equipment
Development of Static and Dynamic Head in the Operating Volume of Pumps for Efficiency and Control Operation • The Affinity Laws as Tools for Efficient Operation • Pump Auxiliaries Pumps (cont'd) Wear Components • Canned Motor and Magnetic Drive Pumps • High Speed/Low Flow Pumps • Servicing and Condition Monitoring Break Compressor Overview Overview of the Main Features of Various Types of Compressors • Classification of Compressors Based on Design and Application • World Standards and Codes Related to Compressor Design Recap	0930 - 0945	Break
Efficiency and Control Operation • The Affinity Laws as Tools for Efficient Operation • Pump Auxiliaries Pumps (cont'd) 1100 - 1230 Wear Components • Canned Motor and Magnetic Drive Pumps • High Speed/Low Flow Pumps • Servicing and Condition Monitoring 1230 - 1245 Break Compressor Overview Overview of the Main Features of Various Types of Compressors • Classification of Compressors Based on Design and Application • World Standards and Codes Related to Compressor Design 1420 - 1430 Recap	0045 1100	Pumps
Efficiency and Control Operation • The Affinity Laws as Tools for Efficient Operation • Pump Auxiliaries Pumps (cont'd) 1100 - 1230 Wear Components • Canned Motor and Magnetic Drive Pumps • High Speed/Low Flow Pumps • Servicing and Condition Monitoring 1230 - 1245 Break Compressor Overview Overview of the Main Features of Various Types of Compressors • Classification of Compressors Based on Design and Application • World Standards and Codes Related to Compressor Design 1420 - 1430 Recap		Development of Static and Dynamic Head in the Operating Volume of Pumps for
Pumps (cont'd) Wear Components • Canned Motor and Magnetic Drive Pumps • High Speed/Low Flow Pumps • Servicing and Condition Monitoring 1230 – 1245 Break Compressor Overview Overview of the Main Features of Various Types of Compressors • Classification of Compressors Based on Design and Application • World Standards and Codes Related to Compressor Design 1420 – 1430 Recap	0943 - 1100	Efficiency and Control Operation • The Affinity Laws as Tools for Efficient
1100 – 1230 Wear Components • Canned Motor and Magnetic Drive Pumps • High Speed/Low Flow Pumps • Servicing and Condition Monitoring 1230 – 1245 Break Compressor Overview Overview of the Main Features of Various Types of Compressors • Classification of Compressors Based on Design and Application • World Standards and Codes Related to Compressor Design 1420 – 1430 Recap		Operation ● Pump Auxiliaries
Speed/Low Flow Pumps • Servicing and Condition Monitoring 1230 - 1245 Break Compressor Overview Overview of the Main Features of Various Types of Compressors • Classification of Compressors Based on Design and Application • World Standards and Codes Related to Compressor Design 1420 - 1430 Recap		Pumps (cont'd)
1230 – 1245 Break Compressor Overview Overview of the Main Features of Various Types of Compressors • Classification of Compressors Based on Design and Application • World Standards and Codes Related to Compressor Design Recap	1100 - 1230	Wear Components • Canned Motor and Magnetic Drive Pumps • High
1245 – 1420		Speed/Low Flow Pumps • Servicing and Condition Monitoring
Overview of the Main Features of Various Types of Compressors • Classification of Compressors Based on Design and Application • World Standards and Codes Related to Compressor Design Recap	1230 – 1245	Break
Compressors Based on Design and Application • World Standards and Codes Related to Compressor Design 1420 – 1430 Recap	1245 – 1420	Compressor Overview
Compressors Based on Design and Application • World Standards and Codes Related to Compressor Design 1420 – 1430 Recap		
1420 – 1430 Recap		Compressors Based on Design and Application • World Standards and Codes
,		Related to Compressor Design
1430 Lunch & End of Day One	1420 – 1430	Recap
	1430	Lunch & End of Day One

Day 2: Monday, 05th of February 2024

Day Z.	Monday, 05 Of February 2024
0730 - 0930	Types of Compressors
	Types, Styles and Configurations of Centrifugal and Axial Compressors •
	Construction Features • Mode of Operation • Compressor Auxiliaries and
	Support Systems
0930 - 0945	Break
0945 – 1100	Centrifugal Compressor
	Main Elements of Centrifugal Compressor Construction • Analysis of Centrifugal
	Compressor Effeciency • Guidelines for Trouble-free Centrifugal Compressor
	Operation
	Centrifugal Compressor (cont'd)
1100 – 1230	Troubleshooting Inspection and Maintenance • Centrifugal Compressors Anti
	Surge System and Surge Protection • Case Studies About Centrifugal Compressors
1230 - 1245	Break
1245 – 1420	Compressor Operation
	Analyse Operating Curves for Surge, Stall and Choke • Define Appropriate
	Equipment for Safe Operation
1420 – 1430	Recap
1430	Lunch & End of Day Two
1400	Lunch O Lhu of Duy 1 wo

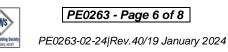
Day 3: Tuesday, 06th of February 2024

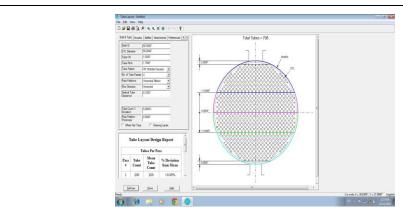
0730 - 0930	Fin Fan Cooler
	<i>Types</i> ● <i>Operational Efficiency</i> ● <i>Capacity Control</i>
0930 - 0945	Break
0945 – 1100	Cooler Operating & Troubleshooting
	Key Operational Considerations • Air vs Water Cooling • Troubleshooting
1100 – 1230	Heater
	Heaters and their Types • Construction & Operating Parameters •
	Inspection/Testing Requirements
1230 - 1245	Break
1245 – 1420	Furnaces
	Types of Furnaces ● Furnace Basic Parts ● Efficient Operation, Air Control etc
1420 - 1430	Recap
1430	Lunch & End of Day Three

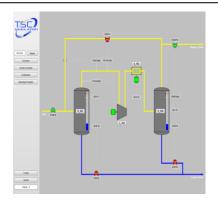
Day 4: Wednesday, 07th of February 2024

2 4y	110anouay, 01 0110braary 2021
0730 - 0930	Fuel Gas System Burners • Gas Burners • Oil Burners
0930 - 0945	Break
0945 - 1100	Fuel Gas System (cont'd) Flame Impingement • Draft • Observations During Normal Operation
1100 – 1230	Heat Exchangers Types ● Shell-and-Tube
1230 – 1245	Break
1245 – 1420	Heat Exchangers (cont'd) Heat Transfer Relation
1420 – 1430	Recap
1430	Lunch & End of Day Four

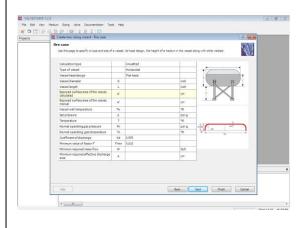
Day 5: Thursday, 08th of February 2024

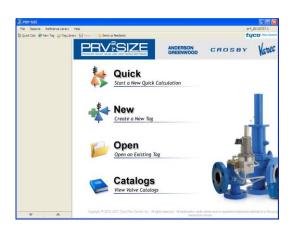

Day o.	marcady, co or robitally 2021
0730 - 0930	Process Vessels
	<i>Types and Functions</i> ● <i>Safety Aspects</i>
0930 - 0945	Break
0945 – 1215	Valves
	<i>Valve Theory</i> • <i>Valve Types</i> • <i>Applications</i>
1215 – 1230	Break
1230 - 1245	Valves (cont'd)
	Function • Operation • Troubleshooting
1245 - 1345	Troubleshooting of Different Equipment & Processes
1345 - 1400	Course Conclusion
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course





Simulator (Hands-on Practical Sessions)


Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art simulators "Heat Exchanger Tube Layout", "SIM 3300 Centrifugal Compressor", "Valvestar 7.2 Simulator", "PRV2SIZE Simulator", and "ASPEN HYSYS" V12.1" simulator.

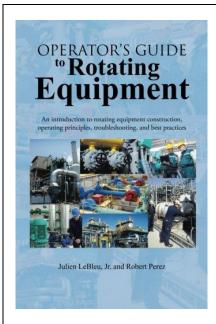


Heat Exchanger Tube Layout Simulator

SIM 3300 Centrifugal Compressor Simulator

Valvestar 7.2 Simulator

PRV²SIZE Simulator



Book(s)

As part of the course kit, the following e-book will be given to all participants:

Title : Operator's Guide to Rotating Equipment:

An Introduction to Rotating Equipment Construction, Operating Principles, Troubleshooting and Best Practices

ISBN : 978-1-49690-868-1

Authors : Julien LeBleu

Robert Perez

Publisher: AuthorHouse

Course Coordinator

Kamel Ghanem, Tel: +971 2 30 91 714, Email: kamel@haward.org

