COURSE OVERVIEW ME0398 Pumps, Compressors, Turbines & Troubleshooting

Course Title

Pumps, Compressors, Turbines & Troubleshooting

Course Date/Venue

January 21-25, 2024/Meclis 1 Meeting Room, Divan Istanbul Sisli, Istanbul, Turkey

Course Reference

ME0398

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Description

exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide delegates with a detailed and up-to-date overview of the fluid

This practical and highly-interactive course includes various practical sessions and

This course is designed to provide delegates with a detailed and up-to-date overview of the fluid mechanic fundamentals and operating practice of pumps, compressors and turbines. It will address aspects of both axial and centrifugal compressors. Upon the successful completion of this course, participants will have acquired the practical knowledge to enable them not only to choose the correct device for a particular application but also be in a position to resolve many commonly occurring operating problems.

The course is ideal for those personnel in the oil, gas, petrochemical, chemical, power and other process industries who require a wider and deeper appreciation of pumps, compressors and turbines, including their design, performance and operation. No prior knowledge of the topic is required. Participants will be taken through an intensive primer of turbo-machinery principles, using the minimum of mathematics, and will learn how to solve the many and varied practical industrial problems that are encountered. The course makes use of an extensive collection of VIDEO material.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply a comprehensive knowledge in pumps, compressors & turbines and troubleshoot rotating equipment in a professional manner
- Identify the different types of turbomachinery including basic design aspects and highlighted problem areas
- Minimize the compressor work by understanding the processes involved and identifying their efficiency
- Discuss the axial flow compressor and the corresponding velocity triangles including torque and power calculations
- List the different types of centrifugal machines including their design, installation, operation, maintenance, re-rate/retrofit and troubleshooting
- Recognize the various beneficial design aspects of turbomachines and understand the crucial process of cavitation in pumps
- Carryout the proper methods of centrifugal pumps installation, operation, maintenance and troubleshooting

Who Should Attend

This course provides an overview of all significant aspects and considerations of pumps, compressors and turbines for those who are involved in the design, selection, maintenance or troubleshooting of such equipment. This includes maintenance, reliability, integrity, engineering, production and operations managers, engineers and other technical staff. Project managers and engineers will also benefit from this program.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

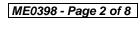
20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 6,000 per Delegate + **VAT**. This rate includes Participants Pack (Folder, Manual, Hand-outs, etc.), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation


Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Ahmed El-Sayed, PhD, MSc, BSc, is a Senior Electromechanical Engineer with over 30 years of extensive experience in Oil, Gas, Refinery, Petrochemical, Power and Utilities industries. He specializes in Troubleshooting Piping & Pipe Support Systems, Layout of Piping Systems & Process Equipment, Pressure Vessels, Piping and Heat Exchangers, Pump, Valves, Piping System, Tank, Vessel, Boiler and Turbine Installation, Piping Vibration, Compressor Analysis and Piping Vibration, ASME B31.1 Power

Piping Design, Analysis and Fabrication, Pipe Support Design & Piping Stress Analysis, Application of Standards in Boiler, Pressure Vessel & Piping Systems, Pipe Support Design & Piping Stress Analysis, Piping Design, Construction & Mechanical Integrity, Pumps, Compressors & Turbines, Reliability Engineering Analysis (RE), Reactive & Proactive Maintenance, Pumps, Valves, Boilers, Pressure Vessels, Heat Recovery Steam Generators (HRSG), Bearings, Compressors, Motors, Turbines, Actuators, Carbon Footprint, Energy Efficiency, Power Plant Performance & Efficiency, P&ID, Engineering Drawing, Codes & Standards, Hydraulic Systems, Reliability Centered Maintenance (RCM), Maintenance, Condition Based Maintenance & Condition Monitoring, Root Cause Maintenance Planning & Scheduling, Shutdown & Analysis (**RCA**) and Turnaround. He is currently the Systems Control Manager of Siemens where he is in-charge of Security & Control of power generation systems and he further takes part in the DCS implementation and commissioning.

During his career life, Dr. Ahmed has been actively involved in a variety of industrial activities including **Maintenance Planning & Scheduling**, **Reliability & Maintenance Management** and **Plant Shutdown & Turnarounds**. Moreover, he is an **authority** in vibration analysis, mechanical failure analysis, accident reconstruction, shock testing, measurement, analysis, calibration, ESS, HALT and HASS.

Dr. Ahmed is well-versed and conversant in the designed and applied automatic control systems using analogy instrumentation and computer-based control systems for a variety of industries with both analogue and discreet logic automatic control and implementation. Likewise, he is in-charge with troubleshooting and PID loop tuning of simple to complex systems installed and is involved in the design, implementation and documentation of emergency shut-down and safety instrumentation systems for a various processes especially for hydraulics, steam turbines, gas turbines, boilers, heat recovery steam generators and large pumping systems.

Dr. Ahmed has PhD, Master's & Bachelor's degree in Electromechanical and Instrumentation Engineering from the University of Wisconsin (USA). Further, he is a Certified Instructor/Trainer and has numerous papers published internationally in the areas of superconductive magnetic energy storage (SMES), SMES role in power systems, power system blackout analysis, intelligent load shedding techniques for preventing power system blackouts and intelligent control of boilers, heat exchangers and pumping systems.

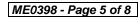
Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Sunday, 21st of January 2024

Sunday, 21st of January 2024
Registration & Coffee
Welcome & Introduction
PRE-TEST
Introduction to Turbomachinery Highlighted Problem Areas
Break
Ideal Gas Equation & Practical Application
Isentropic Processes • Property Diagrams Involving Entropy
Isentropic Processes of Ideal Gases
Constant Specific Heats • Relative Pressure and Relative Specific Volume
Minimizing Compressor Work
Polytropic Processes • Multi-Stage Compression with Inter-Cooling • Isentropic
Efficiency of Turbines • Isentropic Efficiency of Compressors and Pumps
Break
Momentum & Bernoulli's Relations
General Relationship • Relationships for Incompressible Fluids
VIDEO: Basic Pump Types & Technology
Recap
Using this Course Overview, the Instructor(s) will Brief Participants about the
Topics that were Discussed Today and Advise Them of the Topics to be Discussed
Tomorrow
Lunch & End of Day One

Day 2: Monday, 22nd of January 2024


Day 2:	Monday, 22 th of January 2024
0730 - 0800	General Description of Turbomachines
	Centrifugal Pump • Centrifugal Turbine • Centrifugal Air Compressor
0800 - 0830	Impulse Turbine
	Velocity Triangles
	Axial Flow Compressor
0830 - 0900	Velocity Triangles • Torque Calculation and Torque Coefficient • Power Calculation
	and Power Coefficient
0000 0020	Centrifugal Machines
0900 – 0930	Torque Calculation • Head Coefficient • Flow Coefficient • Torque Coefficient
0930 - 0945	Break
0945 - 1015	Performance Curves
	Centrifugal Pump
1015 – 1100	Centrifugal Multistage Pump • Mixed Flow Machines • Centrifugal Air
	Compressor
1100 - 1130	Affinity Laws
	Effect of Impeller Speed •Effect of Impeller Diameter
1130 - 1200	Specific Speed
1200 - 1230	Specific Radius
1230 – 1245	Break
1245 - 1315	Hydraulic Turbines

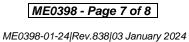
1315 - 1330	VIDEO: Fundamentals of Pump Performance 1
	Design Aspects of Turbomachines
1330 – 1400	Linear Cascades • Radial Cascades • Three- Dimensional Aspects of Axial- Flow
	Machines •Elementary Design Considerations
1400 - 1420	Cavitation
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Two

Day 3: Tuesday, 23rd of January 2024

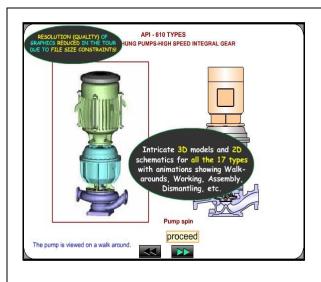
Day 3:	ruesday, 23° or January 2024
0730 - 0930	Centrifugal Pumps Basics
	Types of Centrifugal Pumps • Self- Priming Pumps • Specific Speeds • Suction
	Specific Speed • Best Efficiency Point • Affinity Laws
0930 - 0945	Break
0945 – 1100	Centrifugal Pump Design
	Balancing Disc • Impeller NPSHR • Impeller Centre-Rib • Mechanical Seals •
	Velocity Head
	Pump Sales
1100 - 1230	Affinity Laws •Pump Software • Suction Lift • Viscosity • Re-Rate/Retrofit •
	Head-Rise • Radial/Horizontal Split Case
1230 – 1245	Break
1245 - 1330	Centrifugal Pump Installation
	Foundation • Soft Foot • Suction Pipe • Suction Strainer
1330 - 1420	VIDEO: Fundamentals of Pump Performance 2
	Discussion Forum
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Three

Day 4: Wednesday, 24th of January 2024

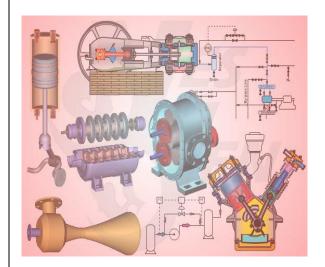
Day 4:	Wednesday, 24" of January 2024
0730 - 0930	Centrifugal Pump Operation
	Start-Up • Minimum Flow • Maximum Pump RPM • Motor Amps/Specific
	Gravity • Entrained Gas
0930 - 0945	Break
0945 - 1100	Centrifugal Pump Operation (cont'd)
	<i>Operation at Shut Off • Temperature-Rise • Thermal Shock</i>
1100 1220	Centrifugal Pump Maintenance
1100 – 1230	Case Gasket • Checking for Wear Clearance • Oil Change • Storage
1230 – 1245	Break
1245 – 1315	Centrifugal Pump Re-Rate/Retrofit
	Impeller Cut • NPSH • De-Staging • Electric Motor Sizing • Viscosity Changes
1315 – 1420	VIDEO: Hydraulic Loads, Critical Speed & Torque
	Discussion Forum
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Four

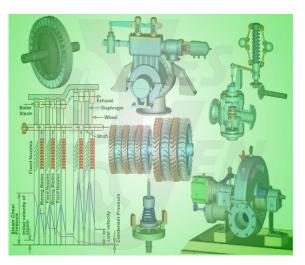

Thursday, 25th of January 2024 Dav 5:

Day o.	That Suay, 20 Of Gardary 2024
0730 - 0830	Centrifugal Pump Troubleshooting
	Bearing Failures • Bearing Housing Oil Leakage • Cavitation Noise and Damage
0830 - 0930	VIDEO: Bearings, Seals & Couplings
0930 - 0945	Break
0945 - 1100	Centrifugal Pump Troubleshooting (cont'd)
	Impeller Cavitation/Erosion • Vibration • Cracked Volute Tongues • NPSH •
	Viscosity Effects
1100 - 1230	Group Discussions
1230 - 1245	Break
1245 - 1345	VIDEO: Special Pump Topics & Final Discussion
1345 – 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course



Simulator (Hands-on Practical Sessions)


Hands-on practical sessions will be arranged for all participants throughout the course duration using "Centrifugal Pumps and Troubleshooting Guide 3.0", "SIM 3300 Centrifugal Compressor Simulator", "CBT on Compressors" and "Steam Turbine & Governing System CBT" simulators.


SANCE AND SANCE STATE ST

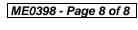
Centrifugal Pumps and Troubleshooting
Guide 3.0

SIM 3300 Centrifugal Compressor Simulator

CBT on Compressors

Steam Turbine & Governing System CBT

Course Coordinator


Kamel Ghanem, Tel: +971 2 30 91 714, Email: kamel@haward.org

