

COURSE OVERVIEW EE0140-4D Motors, Variable Speed Drives & Generators Selection, Applications, Operation, Diagnostic Testing, Maintenance & Troubleshooting

Course Title

Motors, Variable Speed Drives & Generators: Selection. Applications, Operation. Diagnostic Testing, Maintenance & Troubleshooting A CEUS

(24 PDHS)

AWAR

Course Reference

EE0140-4D

Course Duration/Credits

Four days/2.4 CEUs/24 PDHs

Course Date/Venue

Session(s)	Date	Venue
1	January 29-February 01, 2024	Boardroom, Warwick Hotel Doha, Doha, Qata
2	March 04-07, 2024	Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE
3	June 10-13, 2024	Ajman Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE
4	September 09-12, 2024	Al Aziziya Hall, The Proud Hotel Al Khobar, Al Khobar, KSA

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

Maximum efficiency, reliability, and longevity of the various types of motors, variable speed drives and generators are of great concern to many industries. These objectives can only be achieved by understanding the characteristics, selection criteria, common problems and repair techniques, preventive and predictive maintenance.

This course is a MUST for anyone who is involved in the selection, applications, or maintenance of motors, variable speed drives and generators. It provides the latest in technology.

The course covers how this equipment operate and provides guidelines and rules that must be followed for a successful operation. Their basic design, operating characteristics, specification, selection criteria, advanced fault detection techniques, critical components as well as all maintenance issues are covered in detail.

The course is designed to provide a comprehensive understanding of the various types of motors, variable-speed drives and generators. Participants will be able to specify, select, commission and maintain this equipment for their applications.

Course participants will gain enough knowledge to achieve reduced capital, operating and maintenance costs along with increase in efficiency.

EE0140-4D - Page 1 of 10

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply systematic techniques on selection, application, operation, diagnostic testing, maintenance and troubleshooting of motors, variable speed drives and generators
- Discuss the fundamentals and machinery principles including AC machines fundamentals and induction motors
- Identify the speed control of induction motors as well as carryout proper maintenance of motors
- Recognize power electronics, rectifiers and pulse-width modulation inverters
- Describe variable-speed drives, bearings and lubrication
- Employ vibration analysis, predictive maintenance and diagnostic testing
- Determine generators covering rotor, stator, seals, excitation, voltage regulator and power system stabilizer
- Operate, test, inspect and maintain generators in a professional manner

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of motors, variable speed drives and generators for those who are involved in the selection, applications, operation, diagnostic testing, maintenance and troubleshooting of motors and variable speed drives and generators.

Course Fee

Doha	US\$ 5,500 per Delegate. This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Abu Dhabi	US\$ 4,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day
Al Khobar	US\$ 4,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Dubai	US\$ 4,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

EE0140-4D - Page 2 of 10

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

Accredited The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **2.4 CEUs** (Continuing Education Units) or **24 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

EE0140-4D - Page 3 of 10

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Herman Eksten, PE, PgDiP, is a Senior Electrical Engineer with over 40 years of extensive experience within the Petrochemical, Oil & Gas and Power industries specializing in Circuit Breakers & Switchgears, Switchgear Assets Management, Circuit Breakers Control Circuits, Substation Maintenance Techniques, High Voltage Operation, Electrical Protection, Overhead Lines & Substation, Power Supply, High Voltage Substation, Electrical Protection Design, Earthing & Lightning Protection Design, Underground Equipment, Distribution Network Maintenance & Construction, Transformers Operation & Maintenance, Electric Power System,

Power Plant Management, Substation Commissioning & Troubleshooting, Cable Splicing & Termination, Electrical Installation & Maintenance, Power Generation Operation & Control, Switchgear Life Assessment, Structured Cabling, Electric Power System, Power System Stability, Power System Planning & Economics, Power Flow Analysis, Combined Cycle Power Plant, UPS & Battery System, Variable Speed Drives, and HV Motors & Transformers. He is currently the Lead Electrical Engineer of SNC-LAVALIN wherein he is responsible for basic designs and successful implementation of electrical engineering to plant overhead lines and substations.

During his career life, Mr. Eksten held various positions such as the Lead Electrical Engineer, Operations Manager, Project Engineer, Technical Specialist, Customer Executive, District Manager, Electrical Protection Specialist, High-Voltage Operator and Apprentice Electrician for FOX Consulting, UHDE (ThyssenKrupp Engineering), TWP Projects/Consulting (EPMC-Mining), ISKHUS Power, Rural Maintenance (PTY) Energia de Mocambique Lda., Vigeo (PTY) Ltd and ESKOM.

Mr. Eksten is a **Registered Professional Engineering Technologist** and has a Postgraduate Diploma in Management Development Programme and a National Higher Diploma (NHD) in Electrical Power Engineering. Further, he is a **Certified Instructor/Trainer**, a Senior member of the South African Institute Electrical Engineers (**SAIEE**) and holds a Certificate of Registration Membership Scheme from the Engineering Council of South Africa (**ESCA**). He has further delivered numerous trainings, courses, seminars, workshops and conferences internationally.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

EE0140-4D - Page 4 of 10

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 – 0930	Review of Fundamentals/Introduction to Machinery PrinciplesCapacitors • Dielectrics • Magnetic Field • Ampere's Law • Faraday's Law• Inductance • Alternating Currents • Magnetic Circuits • Permeability •Flux • Ferromagnetic Cores • Reluctance • Saturation • Hysteresis
0930 - 0945	Break
0945 - 1100	<i>AC Machines Fundamentals</i> <i>Rotor & Stator Design</i> ● <i>Windings</i> ● <i>Poles</i> ● <i>Three-Phase Circuits</i> ● <i>Induced Torque</i> ● <i>Winding Insulation</i> ● <i>AC Machine Power Flows & Losses</i>
1100 – 1230	Induction MotorsStator & Rotor Construction • Synchronous Speed • Induced Torque •Rotor Slip • Equivalent Circuit of an Induction Motor • Induction MotorConstruction • Squirrel-Cage Rotors • Wound Rotors • Synchronous Speed• Operating Speed • Slip • Equivalent Circuit • Inrush Current •Losses & Power-Flow Diagram • Torque-Speed Characteristics • Variationof Torque-Speed Characteristics • Induction Generator • NEMA Classesof Motors • Control of Motor Characteristics • Starting Circuits
1230 - 1245	Break
1245 - 1330	Speed Control of Induction MotorsSpeed Control by Changing the Line FrequencyVoltageResistanceSolid-State Motor DrivesMotor ProtectionGeneratorMotor Ratings & Specifications
1330 - 1420	Maintenance of MotorsCharacteristics of Motors • Enclosures & Cooling Methods • ApplicationData • Design Characteristics • Insulation of Motors • Failures in Three-Phase Stator Windings • Predictive Maintenance • Motor Troubleshooting •Diagnostic Testing for Motors • Insulation Resistance & Polarization Index
1420 - 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2

0730 - 0830

EE0140-4D - Page 5 of 10

	Power Electronics, Rectifiers & Pulse-Width Modulation Inverters
0830 - 0930	(cont'd) The Three-Phase Full-Wave Rectifier • Filtering Rectifier Output • Pulse Circuits • Relaxation Oscillator Using a PNPN Diode • Pulse Synchronization • Voltage Variation by AC Phase Control • AC Phase Control for a DC Load Driven from an AC Source • AC Phase Angle Control for an AC Load • The Effect of Inductive Loads on Phase Angle Control • Inverters • Rectifiers • External Commutation Inverters • Self-Commutated Inverters • Pulse-Width Modulated (PWM) Inverters
0930 - 0945	Break
0945 – 1100	Variable-Speed Drives Basic Principles of AC Variable-Speed Drives (VSD's) • Constant Torque Region • Constant Power (Extended Speed) Region • Inverters • Parts of an Inverter • Pulse Width Modulated (PWM) Inverters • Insulated Gate Bipolar Transistors (IGBT's) • 2-Level Pulse Width Modulated Inverter (PWM-2) • Input Power Converter (Rectifier) • DC Link Energy • Output IGBT Inverter • Input Sources for Regeneration or Dynamic Slowdown • Dynamic Breaking • Regeneration • PWM-2 Considerations • Transients • Harmonics Power Factor and Failures • Common Failure Modes • Fault Current Limit • Device Explosion Rating • Device Application • Thyristor Failures & Testing • Recognizing Failed Silicon Controlled Rectifier (SCR)/Diod • Testing of SCR's/Diodes • Comments about Failure Rates • AC Drive Applications Issues • Diode Source Current Unbalance • AC Power Factor • AC Input Power Changes with AC Input Voltage • IGBT Switching Transients• Insulation Voltage Stress • Motor Winding Voltage Distribution • Radiated Electromagnetic Interferences (EMI) • Cable Terminating (Matching) Impedance • Inverter Output Filter • Extra Insulation • Cabling Details for AC Drives • Cable Details • Motor • Cable & Power System Grounding • Motor Bearing Currents • Motor Shaft Grounding Brush • Reduction of Stator to Rotor Capacitance Value • Motor Cable Wiring Practices • Summary of Application Rules for AC Drives • Selection Criteria of Variable Speed Drives • Variable Process Speed • Compressors & Pumps • Motor Starting • Regeneration • Dynamometer • Paper Machine Winder • Dynamic Breaking • Maintenance • Common Failure Modes • Motor Application Guidelines
1100 - 1230	Bearings Types of Bearings • Ball & Roller Bearings • Materials & Finish • Sizes of Bearings • Types of Rolling Bearings • Thrust Bearings
1230 – 1245	Break
1245 – 1330	Lubrication Viscosity of Lubricants • Variation of Viscosity with Temperature & Pressure • Viscosity Index • Non-Newtonian Fluids • Greases • VI Improved Oils • Oils at Low Temperatures •Variation of Lubricant Viscosity with Use • Oxidation Reactions • Physical Reactions • Housing and Lubrication • Lubrication of Antifriction Bearings • Used Oil Analysis (Proper Lube Oil Sampling Technique, Test Description and Significance, Visual and Sensory Inspections, Chemical and Physical Tests, Water Content, Viscosity, Emission Spectrographic Analysis, Infrared Analysis, Total Base Number (TBN), Total Acid Number (TAN), Particle Count, Summary)

EE0140-4D - Page 6 of 10

	Vibration Analysis, Predictive Maintenance & Diagnostic Testing
	Application of Sine Waves to Vibration • Resonance • Use of Filtering •
	Vibration Instrumentation • Frequency Domain • Machinery Example •
	Vibration Causes • Forcing Frequency Causes • Unbalance • Misalignment
1220 1420	• Mechanical Looseness • Bearing Defects • Gear Defects • Oil Whirl •
1550 - 1420	Blade or Vane Problems • Electric Motor Defects • Uneven Loading •
	Drive-Shaft Torsion • Resonant Frequency • Vibration Severity • A Case
	History (Motor Shaft Misalignment) • Vibration in Predictive Maintenance
	(Diagnostics (Identifying the Characteristic Vibration Patterns of Common
	Faults; Looseness of Anti-Friction Bearings, Journal Bearings & Gears))
	Recap
1420 1420	Using this Course Overview, the Instructor(s) will Brief Participants about
1420 - 1430	the Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3

	Generators
	<i>Generator Construction</i> • <i>Excitation</i> • <i>Rectifiers</i> • <i>Equivalent Circuit of a</i>
	Synchronous Generator • Power & Torque in Synchronous Generators •
	Synchronous Generator Operating Alone • Effect of Load Changes on a
	Synchronous Generator Operating Alone • Parallel Operation of AC
0730 - 0830	Generators • Conditions Required for Paralleling • The General Procedure
0750 - 0050	for Paralleling Generators • Frequency-Power & Voltage-Reactive Power
	Characteristics of a Synchronous Generator • Operation of Generators in
	Parallel with Large Power Systems • Generator Ratings • Voltage Speed &
	Frequency Ratings • Apparent Power & Power-Factor Ratings •
	<i>Synchronous Generator Capability Curves</i> • <i>Short-Time Operation & Service</i>
	Factor
	Generator Rotor
0830 - 0930	Rotor Construction • Rotor Components (Windings, Fans, End Rings,
	Wedges & Dampers, Sliprings, Brushgear & Shaft Grounding) • Rotor
	Threading & Alignment • Vibration • Bearing • Seals
0930 - 0945	Break
	Generator Stator
	Stator Core • Core Frame • Stator Winding • End Winding Support •
0945 - 1100	<i>Electrical Connections & Terminals</i> • <i>Stator Winding Cooling Components</i>
	• Hydrogen Cooling Components • Stator Casing • Cooling Systems •
	Hydrogen Cooling System
	<i>Generator Seals</i>
1100 – 1230	Shaft Seals & Seal Oil System • Thrust Type Seal • Journal Type Seal •
	Seal Oil System • Stator Winding Water Cooling System • Other Cooling
	Systems

EE0140-4D - Page 7 of 10

1230 - 1245	Break
1245 – 1420	Generator ExcitationAc Excitation SystemsExciter Transient PerformanceThe Pilot Exciter• Salient-Pole Permanent Magnet Generator• The Main Exciter•Exciter Performance Testing• Pilot Exciter Protection• BrushlessExcitation Systems• The Rotating Armature Main Exciter
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day Three

Day 4

-	Generator Voltage Regulator
	Automatic Voltage Regulator (AVR) System Description • The Regulator
0730 - 0930	Auto Follow-Up Circuit Manual Follow-Up AVR Protection
	The Digital AVR • Excitation Control • Rotor Current Limiter •
	Overfluxing Limit
0930 - 0945	Break
	Generator Power System Stabiliser
0945 – 1100	Power Oscillations • Power System Stabiliser (PSS) • Characteristic Of
	Generator Exciter Power System (GEP) • Excitation System Analysis
	Generator Operation
1100 - 1230	Running-up to Speed • Open Circuit Conditions & Synchronization • The
1100 1200	Application of a Load • Capability Chart • Neutral Grounding • Rotor
	Torque
1230 - 1245	Break
	Generators Testing, Inspection & Maintenance
1245 - 1345	Stator & Rotor Tests (Electrical & Mechanical) • Generator Inspection •
1240 1040	Maintenance of Generator & Auxiliaries • Major Repairs • Generator
	Surveillance
	Course Conclusion
1345 - 1400	Using This Course Overview, The Instructor(S) Will Brief Participants About
	The Course Topics That Were Covered During The Course
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

EE0140-4D - Page 8 of 10

Simulators (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art "Troubleshooting Electrical Circuits V4.1 Simulator" and "Lab Volt Testing Device".

EE0140-4D - Page 9 of 10

Course Coordinator

Jaryl Castillo, Tel: +974 445 28 133, Email: jaryl@haward.org

EE0140-4D - Page 10 of 10

