

COURSE OVERVIEW DE0344-10D Oilfield Development and Production Optimization

Course Title

Oilfield Development and Production Optimization

Course Date/Venue

March 10-21, 2024/Boardroom 2, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

(60 PDHs)

Course Reference DE0344-10D

Course Duration/Credits Ten days/6.0 CEUs/60 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of Oilfield Development and Production Optimization. It covers the basics of petroleum geology, reservoir rock and fluid properties; the types, characteristics and formation of oil and gas reservoirs and the fundamentals of reservoir engineering; the exploration techniques and regulatory and environmental considerations; the petrophysical properties, reservoir heterogeneity and geostatistics; and the core analysis and interpretation, log interpretation, 3D reservoir modeling and uncertainty and risk analysis.

Further, the course will also discuss the well drilling and completion, drilling technologies and modern drilling techniques; the drilling fluids, hydraulics and the importance of mud systems; the well completion design, wellbore stability, sand control, testing and pressure transient analysis; the reservoir management strategies, reservoir monitoring and tools and techniques for reservoir surveillance; and the waterflooding principles and secondary recovery methods, enhanced oil recovery (EOR) methods and tertiary recovery techniques.

DE0344-10D - Page 1 of 9

DE0344-10D-03-24|Rev.11|27 February 2024

During this interactive course, participants will learn the production decline analysis, artificial lift methods, production system analysis, choke performance and flow assurance; the scale, corrosion and erosion, well intervention, workover operations and techniques to enhance production; optimizing real-time production and using data for decision-making; the project evaluation of petroleum economics, asset management strategies, risk management in oilfield development and project planning and execution; the health, safety and environmental (HSE) management, stakeholder engagement and effective communication strategies; the advanced waterflooding, CO₂ EOR and sequestration; the thermal recovery methods, chemical EOR techniques, gas injection methods and unconventional oil recovery; the emerging technologies in oil and gas; the sustainability and green practices in oilfield operations; and the future of oil and gas in the energy transition.

Course Objectives

Upon successful completion of this course, each participant will be able to:-

- Apply and gain a comprehensive knowledge on oilfield development and production
 optimization
- Recognize the basics of petroleum geology, reservoir rock and fluid properties
- Identify the types, characteristics and formation of oil and gas reservoirs and the fundamentals of reservoir engineering
- Carryout exploration techniques covering seismic methods and drilling technologies as well as review regulatory and environmental considerations
- Identify petrophysical properties, reservoir heterogeneity and geostatistics
- Carryout core analysis and interpretation, log interpretation, 3D reservoir modeling and uncertainty and risk analysis
- Discuss well drilling and completion as well as implement drilling technologies and modern drilling techniques
- Recognize the drilling fluids and hydraulics and the importance of mud systems
- Illustrate well completion design, wellbore stability, sand control, testing and pressure transient analysis
- Employ reservoir management strategies, reservoir monitoring and the tools and techniques for reservoir surveillance
- Apply waterflooding principles and secondary recovery methods, enhanced oil recovery (EOR) methods and tertiary recovery techniques
- Carryout production decline analysis, artificial lift methods, production system analysis, choke performance and flow assurance
- Determine scale, corrosion and erosion as well as carryout well intervention, workover operations and techniques to enhance production
- Optimize real-time production and use data for decision-making
- Apply project evaluation of petroleum economics, asset management strategies, risk management in oilfield development and project planning and execution

DE0344-10D - Page 2 of 9

- Carryout health, safety and environmental (HSE) management, stakeholder engagement and effective communication strategies
- Illustrate advanced waterflooding, CO₂ EOR and sequestration, thermal recovery methods, chemical EOR techniques, gas injection methods and unconventional oil recovery
- Explain the emerging technologies in oil and gas including the sustainability and green practices in oilfield operations and the future of oil and gas in the energy transition

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of oilfield development and production optimization for production engineers, reservoir engineers, completion engineers, drilling and facilities engineers and field operators.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

- 30% Lectures
- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 7,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

DE0344-10D - Page 3 of 9

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

The International Accreditors for Continuing Education and Training
 (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **6.0 CEUs** (Continuing Education Units) or **60 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

•

**

BAC British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

DE0344-10D - Page 4 of 9

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Hesham Abdou, PhD, MSc, BSc, is a Senior Drilling & Petroleum Engineer with over 35 years of integrated industrial and academic experience as a University Professor. His specialization widely covers in the areas of Oilfield Development & Production Optimization, Concept Selection and Specification of Production Facilities in Field Development Projects, Field Development Planning, Drilling & Completion Technology, Directional Drilling, Horizontal & Sidetracking, Drilling Operation Management, Drilling & Production Equipment, Drilling Fluids & Hydraulics, ERD Drilling & Stuck Pipe Prevention, Natural & Artificial Flow Well Completion Design, Well

Testing Procedures & Evaluation, Well Performance, Wellbore Stability, Coiled Tubing Technology, Oil Recovery Methods Enhancement, Reservoir Management, Reservoir Characterization, Well Integrity Management, Well Casing & Cementing, Acid Gas Removal, Heavy Oil Production & Treatment Techniques, Crude Oil Testing & Water Analysis, Crude Oil & Water Sampling Procedures, Equipment Handling Procedures, Crude & Vacuum Process Technology, Gas Conditioning & Processing, Cooling Towers Operation & Troubleshooting, Sucker Rod Pumping, ESP & Gas Lift, PCP & Jet **Pump**, **Pigging** Operations, Electric Submersible Pumps (**ESP**), Progressive Cavity Pumps (PCP), Sand Control, Water Flooding, Water Lift Pumps Troubleshooting, Water System Design & Installation, Water Networks Design Procedures, Water Pumping Process, Pipelines, Pumps, Turbines, Heat Exchangers, Separators, Heaters, Compressors, Storage Tanks, Valves Selection, Compressors, Tank & Tank Farms Operations & Performance, Oil & Gas Transportation, Oil & Gas Production Strategies, Artificial Lift Methods, Piping & Pumping Operations, Oil & Water Source Wells Restoration, Pump Performance Monitoring, Rotor Bearing Modelling, Hydraulic Repairs & Cylinders, Root Cause Analysis, Vibration & Condition Monitoring, Piping Stress Analysis, Amine Gas Sweetening & Sulfur Recovery, Heat & Mass Transfer and Fluid Mechanics.

During his career life, Dr. Hesham held significant positions and dedication as the **General Manager**, **Petroleum Engineering Assistant General Manager**, **Workover Assistant General Manager**, **Workover Department Manager**, **Artificial Section Head**, **Oil & Gas Production Engineer** and **Senior Instructor/Lecturer** from various companies and universities such as the Cairo University, Helwan University, British University in Egypt, Banha University and Agiba Petroleum Company.

Dr. Hesham has a **PhD** and **Master's** degree in **Mechanical Power Engineering** and a **Bachelor's** degree in **Petroleum Engineering**. Further, he is a **Certified Instructor/Trainer** and a **Peer Reviewer**. Dr. Hesham is a member of Egyptian Engineering Syndicate and the Society of Petroleum Engineering. Moreover, he has published technical papers and journals and has delivered numerous trainings, workshops, courses, seminars and conferences internationally.

DE0344-10D - Page 5 of 9

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Introduction to Oilfield Development
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Overview of the Oil & Gas Industry: History, Current State and Future
0000 - 0000	Trends
0930 - 0945	Break
0945 1030	Basics of Petroleum Geology: Understanding Reservoir Rock and Fluid
0945 - 1050	Properties
1030 - 1130	Oil & Gas Reservoirs: Types, Characteristics and Formation
1130 1230	Fundamentals of Reservoir Engineering: Reservoir Life Cycle, Volumetric
1150 - 1250	Estimation
1230 - 1245	Break
1245 - 1330	Exploration Techniques: Seismic Methods, Drilling Technologies
1330 - 1420	Regulatory & Environmental Considerations: Compliance, Safety and
	Sustainability
1420 - 1430	Recap
1430	Lunch & End of Day One

Day 2:	Reservoir Characterization
0730 - 0830	Petrophysical Properties: Porosity, Permeability and Saturation
0830 - 0930	Reservoir Heterogeneity & Geostatistics: Understanding Variability in
	Reservoirs
0930 - 0945	Break
0945 - 1030	Core Analysis & Interpretation: Laboratory Analysis of Rock Samples
1030 - 1130	Log Interpretation: Understanding Well Logs for Reservoir Evaluation
1130 – 1230	3D Reservoir Modeling: Techniques and Tools
1230 - 1245	Break
1245 - 1420	Uncertainty & Risk Analysis: Managing Uncertainties in Reservoir
	Characterization
1420 - 1430	Recap
1430	Lunch & End of Day Two

Day 3:	Well Drilling and Completion
0730 - 0830	Drilling Technologies: Overview of Modern Drilling Techniques
0830 - 0930	Drilling Fluids & Hydraulics: Understanding the Importance of Mud Systems
0930 - 0945	Break
0945 - 1030	Well Completion Design: Types of Completions, Design Criteria
1030 - 1130	Wellbore Stability: Understanding and Managing Wellbore Pressures
1130 – 1230	Sand Control: Techniques and Strategies
1230 – 1245	Break
1245 – 1420	Well Testing & Pressure Transient Analysis: Interpretation and Application
1420 - 1430	Recap
1430	Lunch & End of Day Three

DE0344-10D - Page 6 of 9

Day 4:	Reservoir Management
0730 – 0830	Reservoir Management Strategies: Maximizing Recovery and Value
0830 - 0930	Reservoir Monitoring: Tools and Techniques for Reservoir Surveillance
0930 - 0945	Break
0945 - 1030	Waterflooding Principles: Secondary Recovery Methods
1030 – 1115	Enhanced Oil Recovery (EOR) Methods: Tertiary Recovery Techniques
1115 – 1230	Production Decline Analysis: Understanding and Predicting Production
1000 1015	
1230 - 1245	Break
1245 – 1420	Reservoir Simulation: Applying Simulation in Reservoir Management
1420 - 1430	Recap
1430	Lunch & End of Day Four

Day 5:	Production Optimization
0730 - 0830	Artificial Lift Methods: Types and Applications
0830 - 0930	Production System Analysis: Nodal Analysis, System Optimization
0930 - 0945	Break
0045 1030	Choke Performance & Flow Assurance: Managing Flow from Reservoir to
0945 - 1050	Surface
1030 - 1115	Scale, Corrosion & Erosion: Challenges and Mitigation Strategies
1115 1230	Well Intervention & Workover Operations: Techniques to Enhance
1115 - 1250	Production
1230 – 1245	Break
1245 – 1420	Real-time Production Optimization: Using Data for Decision-Making
1420 – 1430	Recap
1430	Lunch & End of Day Five

Day 6:	Asset Management and Economics
0730 - 0830	Petroleum Economics: Fundamentals and Project Evaluation
0830 - 0930	Asset Management Strategies: Maximizing Asset Value
0930 - 0945	Break
0945 - 1030	Risk Management in Oilfield Development: Identifying and Managing Risks
1030 - 1115	Project Planning & Execution: Best Practices in Project Management
1115 – 1230	Health, Safety & Environmental (HSE) Management: Key Considerations
1230 - 1245	Break
1245 - 1420	Stakeholder Engagement & Communication: Effective Communication
	Strategies
1420 - 1430	Recap
1430	Lunch & End of Day Six

Day 7:	Advanced Recovery Techniques
0730 - 0930	Advanced Waterflooding: New Approaches and Technologies
0930 - 0945	Break
0945 - 1130	CO2 EOR & Sequestration: Utilization and Environmental Aspects
1130 – 1230	Thermal Recovery Methods: Steam Flooding, SAGD
1230 – 1245	Break
1245 – 1420	Thermal Recovery Methods: Steam Flooding, SAGD (cont'd)
1420 – 1430	Recap
1430	Lunch & End of Day Seven

DE0344-10D - Page 7 of 9

DE0344-10D-03-24|Rev.11|27 February 2024

Day 8:	Advanced Recovery Techniques (cont'd)
0730 - 0930	Chemical EOR Techniques: Polymer, Surfactant Flooding
0930 - 0945	Break
0945 - 1130	Gas Injection Methods: Miscible and Immiscible Gas Injection
1130 - 1230	Unconventional Oil Recovery: Techniques for Shale and Tight Oil
1230 – 1245	Break
1245 – 1420	Unconventional Oil Recovery: Techniques for Shale and Tight Oil (cont'd)
1420 - 1430	Recap
1430	Lunch & End of Day Eight

Day 9:	Case Studies and Practical Applications
0730 – 0830	Case Study: Reservoir Characterization & Development Plan
0830 - 0930	Case Study: Successful EOR Implementation
0930 - 0945	Break
0945 – 1030	Case Study: Drilling Optimization in a Challenging Environment
1030 - 1115	Case Study: Digital Transformation in an Oilfield
1115 – 1230	Practical Workshop: Simulation & Modeling Exercises
1230 - 1245	Break
1245 - 1420	Group Discussion: Problem-Solving in Production Optimization
1420 - 1430	Recap
1430	Lunch & End of Day Nine

Day 10:	Future Trends and Course Wrap-Up
0730 - 0930	Emerging Technologies in Oil & Gas: Innovations Shaping the Future
0930 - 0945	Break
0945 - 1130	Sustainability & Green Practices in Oilfield Operations: Environmental Stewardship
1130 - 1230	The Future of Oil & Gas in the Energy Transition: Renewable Energy and its Impact
1230 - 1245	Break
1245 - 1345	Career Paths & Opportunities in Oilfield Development & Production Optimization
1345 - 1400	Course Conclusion
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

DE0344-10D - Page 8 of 9

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

DE0344-10D - Page 9 of 9

