

COURSE OVERVIEW DE0392 OLGA Flow Assurance

CEUs

(30 PDHs)

<u>Course Title</u> OLGA Flow Assurance

Course Reference DE0392

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Date/Venue

Session(s)	Date	Venue
1	February 25-29, 2024	
2	May 26-30, 2024	Oryx Meeting Room, DoubleTree By Hilton
3	October 06-10, 2024	Doha-Al Sadd, Doha, Qatar
4	November 24-28, 2024	

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-ofthe-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of OLGA Flow Assurance. It covers the challenges of flow assurance in oil and gas production systems; the key features and capabilities of OLGA software; the fundamentals of fluid flow in pipelines and system configuration in OLGA; running and analyzing simple simulations and interpreting data results and initial diagnostics; the PVT modeling, thermal modeling, slug capturing and hydrate formation and prevention; the wax deposition and management; and the use of OLGA for enhancing pipeline design and operational efficiency.

During this interactive course, participants will learn the transient flow phenomena, shut-in and start-up procedures and pressure surge analysis; the effective choke management and ensuring pipeline integrity and risk assessment; extending OLGA's capabilities through scripting; the advanced troubleshooting techniques by solving complex flow assurance problems; enhancing OLGA simulations with external improving tools and pipeline efficiencv and performance; the reliability and sensitivity analysis; and addressing flow assurance in deepwater environments.

DE0392 - Page 1 of 7

DE0392-02-24|Rev.00|05 February 2024

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on OLGA flow assurance
- Discuss the challenges of flow assurance in oil and gas production systems and the key features and capabilities of OLGA software
- Identify the fundamentals of fluid flow in pipelines and apply system configuration in OLGA
- Run and analyze simple simulations and interpret data results and initial diagnostics
- Illustrate PVT modeling, thermal modeling, slug capturing and hydrate formation and prevention
- Carryout wax deposition and management and use OLGA for enhancing pipeline design and operational efficiency
- Recognize transient flow phenomena and apply shut-in and start-up procedures and pressure surge analysis
- Employ systematic techniques for effective choke management and ensure pipeline integrity and risk assessment
- Extend OLGA's capabilities through scripting and apply advanced troubleshooting techniques by solving complex flow assurance problems
- Enhance OLGA simulations with external tools and improve pipeline efficiency and performance
- Carryout reliability and sensitivity analysis and address flow assurance in deepwater environments

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of OLGA flow assurance for drilling and reservoir engineers, operations managers, flow assurance engineers, production chemists, engineers and other technical staff.

Course Fee

US\$ 8,500 per Delegate. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day

DE0392 - Page 2 of 7

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

ACCREDITED
ACCREDITED
PROVIDER

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

• **BAC**

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

DE0392 - Page 3 of 7

DE0392-02-24|Rev.00|05 February 2024

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Hussein Jassem is a Senior Reservoir Engineer with extensive practical years of experience within the Oil & Gas, Refinery and Petroleum industries. His expertise widely covers in the areas of Petrel for Reservoir Engineers, PVT & Phase Behavior of Reservoir Fluids, Core Analysis, SCAL, MBAL, Well & Reservoir Management, Field Development Planning, Reservoir Simulation, Hydrocarbon Reserves Estimation, Evaluation & Reporting, Sandstone & Carbonate Reservoir

(Homogeneous & Heterogeneous), Gas Cap Reservoir, Well Testing Interpretation, Well Test Analysis & Design, PVT & EOS Characterization, PVT Fluid Characterization, Drilling Engineering & Well Planning, Well Performance & Analysis, Well Completion & Operation, Applied Reservoir Engineering, Advanced SCAL Techniques & Applications, Water Flooding, Gas Injection, Enhanced Oil Recovery (EOR), OLGA Well Dynamics, Oil & Gas Analytics, Core Handling & Lab Analysis, Wireline OH Logging & Formation Evaluation, Horizontal Drilling, Production Engineering, Production Logging & **Reservoir** Monitoring, Practical Reservoir Engineering, Fractured Reservoirs, Reservoir & Facility Management, Hydrocarbon Reservoir Permeability, Integrated **Reservoir** Analysis, **Petrophysical** Characterization, **Carbonate Reservoir** Modelling, Parameters Water Quality for Reservoir Management, Clastic Reservoir Characterization and Petroleum Economics. Further, he is well-skilled in various RE software applications such as Oilfiled Manager (OFM), PVTsim, GAP, IPM-MBAL, PROSPER, PETEX, WePS, PanSystem, MoRes/HFPT, Petrel, Three-Phase Black-Oil Reservoir and ECLIPSE simulation. He is currently the Senior Reservoir Engineer wherein he is responsible for the operational reservoir engineering and integrated reservoir studies/environments.

During Mr. Hussein's career life, he has gained his practical and field experience through his various significant positions as the **Cluster Development Leader & RE Section Head/Trainer**, **Operation Reservoir Engineer**, **Reservoir Engineer** from numerous international companies such as the Omar/Thayyem Cluster, AI Furat Petroleum and Syrian Petroleum company just to name a few.

Mr. Hussein has a **Bachelor's** degree in **Petroleum Engineering**. Further, he is a **Certified Instructor/Trainer** and has further delivered numerous trainings, courses, workshops and conferences worldwide.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

DE0392 - Page 4 of 7

DE0392-02-24|Rev.00|05 February 2024

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

Duyi		
0730 – 0800	Registration & Coffee	
0800 - 0815	Welcome & Introduction	
0815 - 0830	PRE-TEST	
0830 - 0930	Overview of Flow Assurance: The Challenges in oil & Gas Production Systems	
0930 - 0945	Break	
0945 - 1030	<i>Introduction to OLGA:</i> Key Features & Capabilities of the OLGA Software	
1030 - 1130	Basic Principles of Multiphase Flow: The Fundamentals of Fluid Flow in Pipelines	
1130 – 1215	System Configuration in OLGA: Setting up Basic Pipeline Models	
1215 – 1230	Break	
1230 – 1330	Simulation Basics: Running & Analyzing Simple Simulations	
1330 - 1420	Data Interpretation: Results & Initial Diagnostics	
1420 - 1430	Recap	
1430	Lunch & End of Day One	

Day 2

Day Z	
0730 - 0830	PVT Modeling: Importance & Methods of Fluid Characterization
0830 - 0930	Thermal Modeling: Heat Transfer & Temperature Prediction in Pipelines
0930 - 0945	Break
0945 - 1100	Slug Capturing: Understanding & Modeling Slug Flow
1100 – 1215	Hydrate Formation & Prevention: Strategies for Managing Hydrates
1215 – 1230	Break
1230 - 1330	<i>Wax Deposition & Management: Techniques for Modeling & Mitigating Wax</i>
1330 - 1420	Use of OLGA for Design & Optimization: Enhancing Pipeline Design & Operational Efficiency
1420 - 1430	Recap
1430	Lunch & End of Day Two

Day 3

Duy J		
0730 - 0830	Transient Flow Phenomena: The Dynamics of Multiphase Flow	
0830 - 0930	Shut-in & Start-up Procedures: Modeling Pipeline Operations	
0930 - 0945	Break	
0945 - 1100	Pressure Surge Analysis: Predicting & Managing Pressure Surges	
1100 – 1215	Choke Modeling & Optimization: Techniques for Effective Choke	
1100 - 1215	Management	
1215 - 1230	Break	
1230 - 1330	Pipeline Integrity & Risk Assessment: Ensuring Safety & Compliance	
1330 – 1420	Case Studies: Real-World Applications & Problem-Solving Using OLGA	
1420 - 1430	Recap	
1430	Lunch & End of Day Three	

DE0392 - Page 5 of 7

Day 4

0730 - 0830	<i>Custom Modeling & Scripting:</i> Extending OLGA's Capabilities Through Scripting	
0830 - 0930	Advanced Troubleshooting Techniques: Solving Complex Flow Assurance Problems	
0930 - 0945	Break	
0945 - 1100	Integration with Other Software Tools: Enhancing OLGA Simulations with External Tools	
1100 – 1215	Optimization Strategies: Improving Pipeline Efficiency & Performance	
1215 – 1230	Break	
1230 - 1330	Reliability & Sensitivity Analysis: Assessing the Robustness of Simulations	
1330 - 1420	<i>Interactive Session:</i> Hands-on Practice & Problem-Solving with Expert Guidance	
1420 - 1430	Recap	
1430	Lunch & End of Day Four	

Day 5

Deepwater Production Challenges: Addressing Flow Assurance in
Deepwater Environments
Break
Case Study Analysis: Detailed Examination of Specific Flow Assurance
Challenges
<i>Group Project:</i> Participants Work on a Flow Assurance Project Using OLGA
Break
Project Presentations: Sharing Insights & Solutions from Group Projects
Course Conclusion
POST-TEST
Presentation of Course Certificates
Lunch & End of Course

DE0392 - Page 6 of 7

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using one of our state-of-the-art simulators "OLGA software".

Creat and the control Image: Creat and the control Nodes and and control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the control Image: Creat and the	FRMTherm Quick Start - Quick start that ers up a bit found flow You don't write to use the quick start of You don't write to use the quick start of Sector in matching Generation Sector in matching Generation Sector in matching Sector	
Output		mulate 🔍 100% 🖂 💶 🔿 🕀 🔍

Course Coordinator

Jaryl Castillo, Tel: +974 4423 1327, Email: jaryl@haward.org

DE0392 - Page 7 of 7

