

<u>COURSE OVERVIEW PE0263</u> Fired Heaters, Air Coolers, Heat Exchangers, Pumps, Compressors, Pressure Vessels & Valves

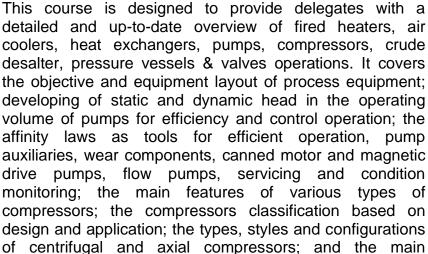
Course Title

Fired Heaters, Air Coolers, Heat Exchangers, Pumps, Compressors, Pressure Vessels & Valves

Course Date/Venue

January 21-25, 2024/The Paragon Meeting Room, The H Dubai Hotel, Sheikh Zayed Rd - Trade Centre, Dubai, UAE

(30 PDHs)


Course Reference PE0263

<u>Course Duration/Credits</u> Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

During this interactive course, participants will learn the compressor operation; the fin fan cooler including its types, operational efficiency and capacity control; the operation and troubleshooting of cooler; the heaters and their types, construction and operating parameters and inspection/testing requirements; the types and basic parts of furnaces; the fuel gas system of burners, gas burners, oil burners, flame impingement, draft and observations during normal operation; the heat exchangers, process vessels and valves; and the troubleshooting of different equipment and processes.

elements of centrifugal compressor construction and

PE0263 - Page 1 of 18

efficiency.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on fired heaters, air coolers, heat exchangers, pumps, compressors, crude desalter, pressure vessels & valves operations
- Discuss process equipment including its objective and equipment layout
- Develop static and dynamic head in the operating volume of pumps for efficiency and control operation
- Discuss the affinity laws as tools for efficient operation, pump auxiliaries, wear components, canned motor and magnetic drive pumps, flow pumps, servicing and condition monitoring
- Explain the main features of various types of compressors, classify compressors based on design and application including world standards and codes related to compressor
- Identify the types, styles and configurations of centrifugal compressors and axial compressors
- Explain the main elements of centrifugal compressor construction and analyze centrifugal compressor efficiency
- Employ guidelines for trouble-free centrifugal compressor operation including troubleshooting, inspection and maintenance
- Operate compressor by analysing curves for surge, stall and choke as well as define appropriate equipment for safe operation
- Recognize fin fan cooler including its types, operational efficiency and capacity control
- Operate and troubleshoot cooler through key operational considerations and proper troubleshooting
- Discuss heaters and their types, construction and operating parameters, inspection/testing requirements
- Identify the types and basic parts of furnaces including their efficient operation and air control
- Analyze the fuel gas system of burners, gas burners, oil burners, flame impingement, draft and observations during normal operation
- Differentiate heat exchangers, process vessels and valves
- Troubleshoot different equipment and processes in a professional manner

Exclusive Smart Training Kit - H-STK[®]

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of an overview of all significant aspects and considerations of operation of process equipment for engineers, design engineers, maintenance staff and other technical staff.

PE0263 - Page 2 of 18

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

ACCREDITED

The International Accreditors for Continuing Education and Training (IACET USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

• BAC

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day. In addition to the Course Manual, participants will receive an e-book "Operator's Guide to Rotating Equipment: An Introduction to Rotating Equipment Construction, Operating Principles, Troubleshooting and Best Practices", published by AuthorHouse.

PE0263 - Page 3 of 18

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Hesham Abdou, PhD, MSc, PgDip, BSc, is a Senior Process & Petroleum Engineer with 40 years of integrated experience within the Oil & Gas industries. His specialization widely covers in the areas of Artificial Lift System, Artificial Lift Methods, Petroleum Economics, Petroleum Refinery Processing, Refinery Material Balance Calculation, Refinery Gas Treating, Asset Operational Integrity, Drilling Operations, Drilling Rig, Bits & BHA, Mud Pumps, Mud logging Services, Wireline & LWD Sensors, Casing & Cementing Operation, Completion & Workover Operations, Petroleum Engineering, Production Optimization, Well Completion, Rig & Rigless Workover,

Advanced PVT & EOS Characterization, PVT/Fluid Characterization/EOS, Advanced Phase Behaviour & EOS Fluid Characterization, PVT Properties of Reservoir Fluids, Directional Drilling Fundamentals, Application & Limitation, Horizontal & Multilateral Wells (Analysis & Design), Directional, Horizontal & Multilateral Drilling, Root Cause Analysis (RCA), Root Cause Failure Analysis (RCFA), Root Cause Analysis Study, Root Cause Analysis Techniques & Methodologies, Process Hazard Analysis (PHA), Crude Oil Testing & Water Analysis, Crude Oil & Water Sampling Procedures, Equipment Handling Procedures, Crude & Vacuum Process Technology, Gas Conditioning & Processing, Cooling Towers Operation & Troubleshooting, Sucker Rod Pumping, ESP & Gas Lift, PCP & Jet Pump, Pigging Operations, Electric Submersible Pumps (ESP), Progressive Cavity Pumps (PCP), Natural & Artificial Flow Well Completion, Well Testing Procedures & Evaluation, Well Performance, Coiled Tubing Technology, Oil Recovery Methods Enhancement, Well Integrity Management, Well Casing & Cementing, Acid Gas Removal, Heavy Oil Production & Treatment Techniques, Water Flooding, Water Lift Pumps Troubleshooting, Water System Design & Installation, Water Networks Design Procedures, Water Pumping Process, **Pipelines**, **Pumps**, Turbines, Heat Exchangers, Separators, Heaters. Compressors, Storage Tanks, Valves Selection, Compressors, Tank & Tank Farms Operations & Performance, Oil & Gas Transportation, Oil & Gas Production Strategies, Artificial Lift Methods, Piping & Pumping Operations, Oil & Water Source Wells Restoration, Pump Performance Monitoring, Rotor Bearing Modelling, Hydraulic Repairs & Cylinders, Root Cause Analysis, Vibration & Condition Monitoring, Piping Stress Analysis, Amine Gas Sweetening & Sulfur Recovery, Heat & Mass Transfer and Fluid Mechanics.

During his career life, Dr. Hesham held significant positions and dedication as the General Manager, Petroleum Engineering Assistant General Manager, Workover Assistant General Manager, Workover Department Manager, Artificial Section Head, Oil & Gas Production Engineer from Agiba Petroleum Company and Engineering Consultant/Instructor for various Oil & Gas companies as well as a Senior Instructor/Lecturer for PhD, Master & BSc degree students from various universities such as the Cairo University, Helwan University, British University in Egypt, Banha University.

Dr. Hesham has **PhD** and **Master** degrees as well as **Post Graduate Diploma** in **Mechanical Power Engineering** and a **Bachelor** degree in **Petroleum Engineering**. Further, he is a **Certified Instructor/Trainer** and a **Peer Reviewer**. Dr. Hesham is an active member of Egyptian Engineering Syndicate and the Society of Petroleum Engineering. Moreover, he has published technical papers and journals and has delivered numerous trainings, workshops, courses, seminars and conferences internationally.

PE0263 - Page 4 of 18

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Sunday, 21 st of January 2024
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
	Introduction to Process Equipment
0830 - 0930	Process Equipment Objective • Types of Process Plants • Process Equipment
	<i>Layout</i> • <i>Rotating Equipment</i> • <i>Stationery Equipment</i>
0930 - 0945	Break
	Pumps
0945 – 1100	Development of Static and Dynamic Head in the Operating Volume of Pumps for
0343 - 1100	Efficiency and Control Operation • The Affinity Laws as Tools for Efficient
	Operation • Pump Auxiliaries
	Pumps (cont'd)
1100 - 1230	Wear Components • Canned Motor and Magnetic Drive Pumps • High
	Speed/Low Flow Pumps • Servicing and Condition Monitoring
1230 - 1245	Break
	Compressor Overview
1245 – 1420	<i>Overview of the Main Features of Various Types of Compressors</i> • Classification of
1240 1420	Compressors Based on Design and Application • World Standards and Codes
	Related to Compressor Design
1420 - 1430	Recap
1430	Lunch & End of Day One

Day 2:	Monday, 22 nd of January 2024
0730 - 0930	Types of CompressorsTypes, Styles and Configurations of Centrifugal and Axial CompressorsConstruction Features• Mode of OperationSupport Systems
0930 - 0945	Break
0945 - 1100	Centrifugal CompressorMain Elements of Centrifugal Compressor Construction • Analysis of CentrifugalCompressor Effeciency• Guidelines for Trouble-free Centrifugal CompressorOperation

PE0263 - Page 5 of 18

Haward Technology Middle East

1100 – 1230	<i>Centrifugal Compressor (cont'd)</i> <i>Troubleshooting Inspection and Maintenance</i> • <i>Centrifugal Compressors Anti</i> <i>Surge System and Surge Protection</i> • <i>Case Studies About Centrifugal Compressors</i>
1230 – 1245	Break
1245 – 1420	Compressor OperationAnalyse Operating Curves for Surge, Stall and Choke• Define AppropriateEquipment for Safe Operation
1420 – 1430	Recap
1430	Lunch & End of Day Two

Day 3:	Tuesday, 23 rd of January 2024
0730 - 0930	Fin Fan Cooler
0750 - 0950	<i>Types</i> • <i>Operational Efficiency</i> • <i>Capacity Control</i>
0930 - 0945	Break
0945 - 1100	Cooler Operating & Troubleshooting
0945 - 1100	Key Operational Considerations • Air vs Water Cooling • Troubleshooting
	Heater
1100 – 1230	Heaters and their Types • Construction & Operating Parameters •
	Inspection/Testing Requirements
1230 – 1245	Break
1245 - 1420	Furnaces
	<i>Types of Furnaces</i> • <i>Furnace Basic Parts</i> • <i>Efficient Operation, Air Control etc</i>
1420 – 1430	Recap
1430	Lunch & End of Day Three

Day 4:	Wednesday, 24 th of January 2024
0730 - 0930	Fuel Gas System
0750 - 0950	Burners • Gas Burners • Oil Burners
0930 - 0945	Break
0945 - 1100	Fuel Gas System (cont'd)
0945 - 1100	Flame Impingement • Draft • Observations During Normal Operation
1100 – 1230	Heat Exchangers
1100 - 1230	Types • Shell-and-Tube
1230 – 1245	Break
1245 1420	Heat Exchangers (cont'd)
1245 – 1420	Heat Transfer Relation
1420 – 1430	Recap
1430	Lunch & End of Day Four

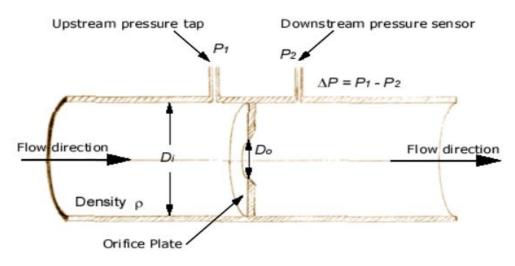
Day 5:	Thursday, 25 th of January 2024
0730 - 0930	Process Vessels
0750 - 0950	<i>Types and Functions</i> • <i>Safety Aspects</i>
0930 - 0945	Break
0045 1215	Valves
0945 – 1215	<i>Valve Theory</i> • <i>Valve Types</i> • <i>Applications</i>
1215 - 1230	Break
1000 1045	Valves (cont'd)
1230 – 1245	Function • Operation • Troubleshooting
1245 - 1345	Troubleshooting of Different Equipment & Processes
1345 - 1400	Course Conclusion
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course
	PE0263 - Page 6 of 18

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using various online system calculator.

203 jackar 203 jackar 203 jackar 203 jackar 203 jackar 204 jackar 205 ja	Leight of gales L Poor roughteess Flow medium Poor roughteess Poor roughteess Flow medium Poor roughteess
Nozzle Discharge Pressure: psi ↓	Input Data in Black Color Output Data in Black Color Output Data in Red Color Nezzle celfice size, in. 0.013 Pressure, Kpai 40 Nozzle Dish. Coeff. 0.72 Pressure, bar 2757.9 gpm 0.73 bbl/d 24.899 SPRAY BAR NOZZLE CONFIGURATION CHART
Diameter: mm	White/Addition Technologies, Inc. SPARY BAP HUZZLS CODE CE SHOUND CODE CE SHALL STREP LHOD MODELLS High Coheshe Nazzle Filme Chart - FLOW - GPM 0 Pressure Instituted Ovifice 20NPDI 26KPGI 20NPDI 26KPGI 26KPGI <t< th=""></t<>
CALCULATE Flow Rate:	8.806 0.14 8.12 0.15 0.15 0.15 9.007 0.15 0.17 0.18 0.207 0.21 9.006 0.19 0.22 0.24 0.29 0.28 9.006 0.15 0.39 0.30 0.35 0.35 9.010 0.30 0.39 0.37 0.41 0.43 9.111 0.27 0.42 0.46 0.49 0.22
Ipm J	8/312 0.44 8/32 0.54 0.69 0.63 0/15 0.51 0.59 0.43 0.69 0.73 0/14 0/60 8/69 0.73 0.69 0.73 0/15 0.60 8/69 0.73 0.69 0.54 0/15 0.68 8/69 0.73 0.69 0.54 0/15 0.68 8/69 0.73 0.69 0.84
1.41 k - adiabatic expansion 214.7 P ₂ - absolute final	ges f compressed air at atmospheric pressure (cfm, ft ³ /min) nsion coefficient I pressure (psi)
Horsepower C Input Data	Units SI(bar)
Primary Pressure Secondary Pressure	0 barG 0 barG

PE0263 - Page 7 of 18

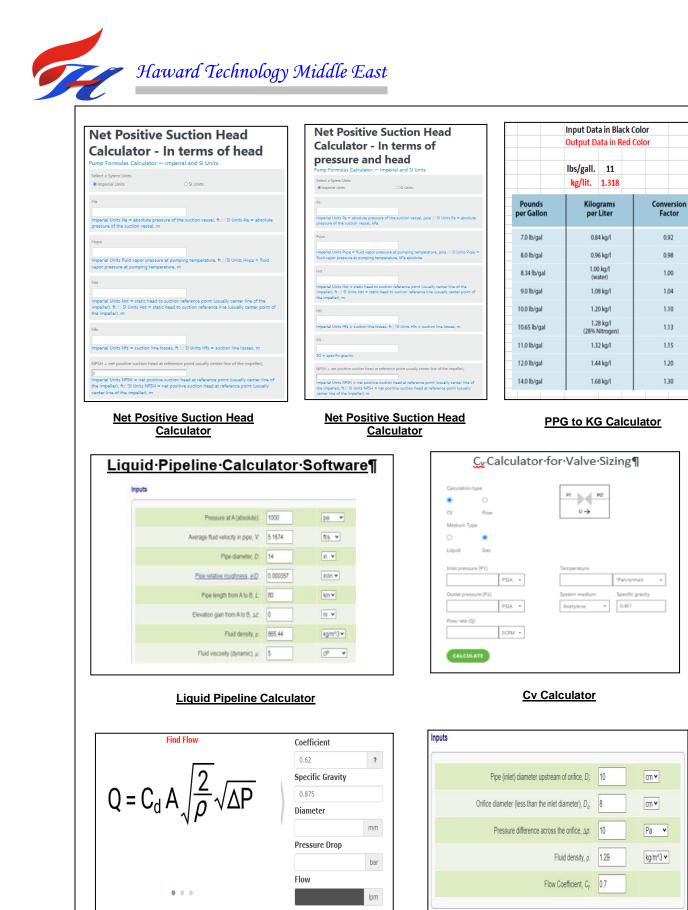

Equivalent	Corrosion Rate Calculator	
	Enter data in given fields and click on Calculate for res	
	Weight Loss	Density
	Area	gm/cm3 🗸
		Time
	mm2 V	millisec 🗸
		Calculate
ic Feet Of Natural Gas Barrels Of Oil Equivalent (bboe)	Result: Corrosion Rate in mpy	*
0		
Cubic Feet Calculator	Corrosion Rat	e Calculator
HYDRONICS CALCULATOR	Pipe-Pressure-Los	s∙Calculator¶
- Alge Plan Ray gan Pipel and some V - Name	Pressure at A (absolute):	100 kPa •
	Average fluid velocity in pipe, V.	1 m/s •
Mnimum pipe diameter calculator	Pipe diameter, D.	10 cm ¥
and free face (gen) gen (main free face (gen) gen (main value), free (Pice relative roughness_e/D	0 m/m ¥
0- joss	Pipe length from A to B, L:	50 m ¥
	Elevation gain from A to B, Δz	0 m ¥
Water flow rate calculator	Fluid density, p:	1 kg1 ¥
Water flow rate calculator Pps (Sevence carries) water material theory C+ part part part	Fluid density, ρ: Fluid viscosity (dynamic), μ:	1 (P v
Water flow rate calculator		
Water flow rate calculator Image: Control of the second		1 (P *
Hydronics Calculator	Fluid viscosity (dynamic), µ:	1 (P *
Hydronics Calculator	Fluid viscosity (dynamic), μ: <u>Pipe Pressure Loss C</u>	1 (P *
Image: Contract of the second seco	Puid viscosity (dynamic), µ: <u>Pipe Pressure Loss C</u> or-Water-Circulating-Heat-Transfer¶ timing how long it takes to fill a known volume conta container. Accurately measure the water temperature	1 CP v
Image: Second state and the second state	Puid viscosity (dynamic), µ: <u>Pipe Pressure Loss C</u> or-Water-Circulating-Heat-Transfer¶ timing how long it takes to fill a known volume conta container. Accurately measure the water temperature	1 CP v
BTU-Calculator-&-BTU-Formulas-f Weighed Water Test Measure the flow of water through your process by example, allow your process water to fill a 5-gallon exiting your process. Use this formula to calculate formula Formula	Puid viscosity (dynamic), µ: <u>Pipe Pressure Loss C</u> or-Water-Circulating-Heat-Transfer¶ timing how long it takes to fill a known volume conta container. Accurately measure the water temperature	iner. For entering and
BTU-Calculator-&·BTU-Formulas-fi Weighed Water Test Measure the flow of water through your process by example, allow your process. Use this formula to calculate field or exiting your process. Use this formula to calculate field or exiting your process. Use this formula to calculate field or exiting your process. Use this formula to calculate field or exiting your process. Use this formula to calculate field or exiting your process. Use this formula to calculate field or exiting your process. Use this formula to calculate field or exiting your process. Use this formula to calculate field or exiting your process. Use this formula to calculate field or exiting your process. Use this formula to calculate field or exiting your process. Use this formula to calculate field or exiting your process. Use this formula to calculate field or exiting your process. Use this formula to calculate field or exiting your process. Use this formula to calculate field or exiting your process. Use this formula to calculate field or exiting your process. Use this formula to calculate field or exiting your process. Use this formula to calculate field or exiting your process. Use this formula to calculate field or exiting your process. Use this formula to calculate field or exiting your process.	Puid viscosity (dynamic), µ: <u>Pipe Pressure Loss C</u> or-Water-Circulating-Heat-Transfer¶ timing how long it takes to fill a known volume conta container. Accurately measure the water temperature 3TU cooling required:	iner. For entering and
Image: state in the state	Puid viscosity (dynamic), µ: <u>Pipe Pressure Loss C</u> or-Water-Circulating-Heat-Transfer¶ timing how long it takes to fill a known volume conta container. Accurately measure the water temperature 3TU cooling required:	iner. For entering and 00.4*Formula
BTU-Calculator.	Plud viscosity (dynamic), µ: Pipe Pressure Loss C or-Water-Circulating-Heat-Transfer¶ timing how long it takes to fill a known volume conta container. Accurately measure the water temperature 3TU cooling required: Leaving Process - Temperature Entering Process) x 5	iner. For entering and 00.4*Formula

PE0263 - Page 8 of 18

Inputs

Pipe (inlet) diameter upstream of orifice, <i>D</i> _i :	8	in 🗸
Orifice diameter (less than the inlet diameter), D_o :	3	in 🗸
Pressure difference across the orifice, Δp :	20	psi 🗸
Fluid density, ρ:	835	kg/m^3 🗸
Flow Coefficient, C _f .	0.82	

Answers


Velocity at the inlet, V_i :	2.10 m/s	m/s 🗸
Volumetric Flowrate, Q:	1080 gpm	gpm 🗸
Mass Flowrate:	56.7 kg/s	kg/s ►

Flow Rate through an Orifice or Valve Calculator

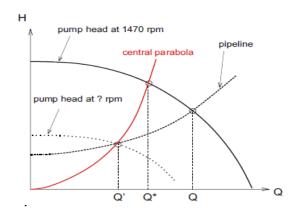
PE0263 - Page 9 of 18

Flowrate Calculator

Find Flow Calculator

PE0263 - Page 10 of 18

	Coefficient•of•Dischar	rge-Calculator¶	
	using	hydraulic head 💌	
	Water level	H Q	
	Flow parameters		
	Diameter (d)	<u>m •</u>	
	Area (A)	<u>m² ×</u>	
	Head (H)	<u>m.</u>	
	Actual discharge (Q)	<u>m³/s •</u>	
Sonvert hor:	<u>Coefficient Discharg</u> sepower hour to gallon [U		
		horsepower hour	
		gallon [U.S.] of diese	l oil
Convert			


PE0263 - Page 11 of 18

Liquid Pumpin	g Program	Output Results	
Input Data		Flow Velocity, ft/s	5.0154
	20	Erosion Velocity, ft/s	13.440
API	28	E/I.D.	0.001786
c.P.	5	sp.gr.	0.8871
1000 bbl/d	3.3	Re	19290.3
Length, km	2.4384	F	0.02987
I.D., in.	2.800	Hf, psi	153.67
Rough. (E), in.	0.005	Hf, m water	108.17
		Total Pump Dich. psi	276.68
Difference in elev., m	50	TDP, psi	196.68
Destination press., psi	60	Hydr. Power, HP	16.99
Pump Suc. psi	80	Hydr. Power, Kw	12.67
Overall Pump Eff., %	65	Shaft Power, HP	18.88
Motor Eff., %	90	Shaft Power, Kw	14.083
		Nama Plate Motor HP	23.60
Motor Loading %	80	Nama Plate Motor Kw	17.60

A pump running at 1470[rpm] with $H_{pump} = 45 - 2781Q^2$ head delivers water into a pipeline with $H_{pipe} =$ $20 + 1125Q^2$. Calculate the required revolution number for the reduced flow rate $Q' = 0.05[m^3/s]$.

Solution:

- The actual working point is given by the solution of $H_{pump} = H_{pipe}$, which gives $Q = 0.08[m^3/s]$ and H = 27.2[m].
- Affinity states that while varying the revolutionary speed, H/n^2 and Q/n remain constant. Thus, also H/Q^2 remains constant, let's denote this constant by a. So, while varying the revolutionary speed, the working point moves along the *central parabola* (see figure), given by $H_{ap} = a Q^2$.

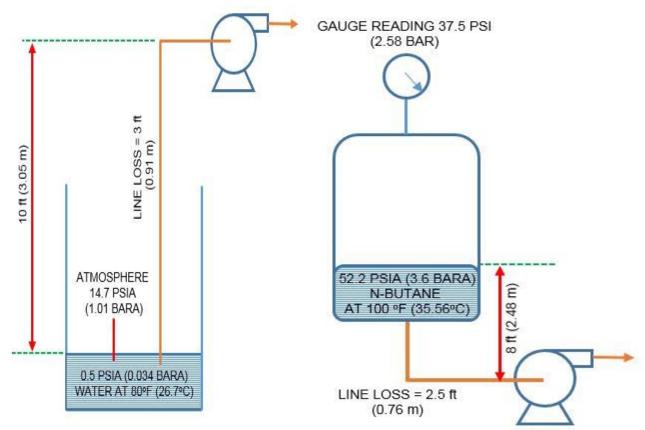
However, as Q' is given and we also know that this point has to be located on the pipeline characteristic, we know that $H' = 20 + 1125 \times 0.05^2 = 22.81[m]$. Thus, the parameter of the affine parabola is $a = H'/Q'^2 = 1000$ 9125.

 Q^* is given by the intersection of the affine parabola and the original pump characteristic: $H_{ap}(Q^*) =$ $H_{pump}(Q^*)$, which gives $Q^* = 0.06148[m^3/s]$ with $H^* = 34.5[m]$.

Now we can employ affinity between Q^* and Q':

$$n' = n^* \frac{Q'}{Q^*} = 1470 \times \frac{0.05}{0.06148} = 1195.5[rpm]$$

and just for checking the calculation


$$H' = H^* \left(\frac{n'}{n^*}\right)^2 = 34.5 \times \frac{1195.5^2}{1470^2} = 22.81[m].$$

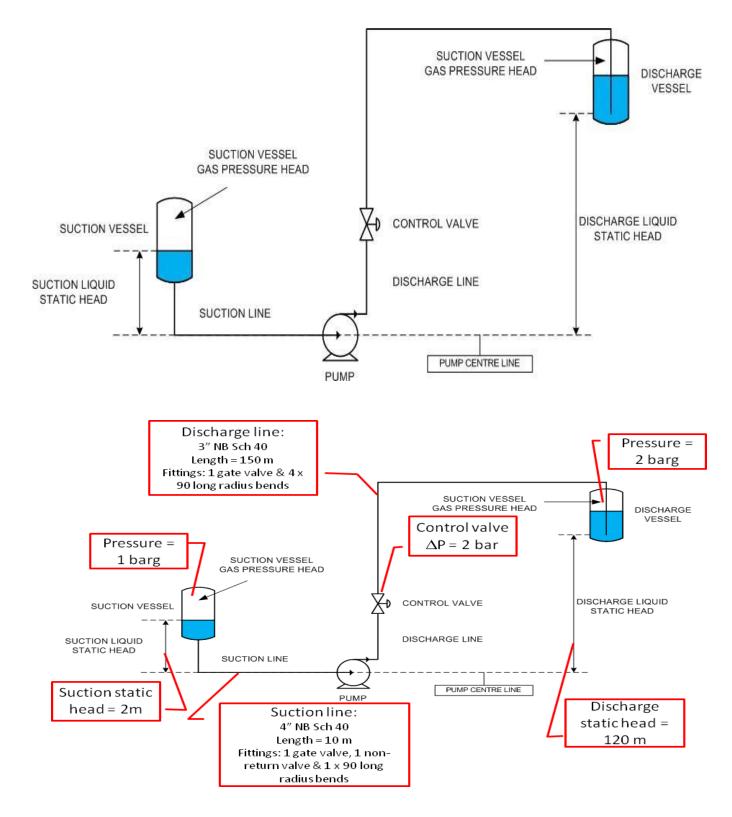
PE0263 - Page 12 of 18

NPSHA of pump – suction lift

NPSHA of pump – at boiling point SG of n-butane at 100 deg F = 0.56

NPSHA = Hatmp.+/- Hs – Hf – Hvap.

https://engineeringunits.com/net-positive-suction-head-calculator/?utm_content=cmp-true http://www.pressure-drop.com/Online-Calculator/index.html


NPSH Calculations		
	Flow Velocity, ft/s	2.6620
36		0.001671
3		0.8448
10		17363.9
14.7		
20	F	0.0302
2.0	Hf, psi	0.048
0.003	Hf, ft water	0.111
2.992	NPSHA, ft oil	32.72
0.005	NPSHA, ft water	27.64
	36 3 10 14.7 20 2.0 0.003 2.992	Solution Solution 36 E/I.D. 3 sp.gr. 10 Re 14.7 F 20 F 2.0 Hf, psi 0.003 Hf, ft water 2.992 NPSHA, ft oil

PE0263 - Page 13 of 18

PE0263 - Page 14 of 18

PUMP DETAILS

Pump tag number Suction vessel tag number Discharge vessel tag number		P-001 V-001 V-002
Barometric pressure NPSH available margin	P _{atm} H _{margin}	1.013 bara
Pump efficiency	η η	70%
FLUID PROPERTIES		
Fluid Phase Flowrate Density Viscosity Vapour pressure	m ρ μ Ρ _{vap}	Water Liquid 30000 kg/hr 998 kg/m3 1 cP 0.023 bara
VESSEL GAS PRESSURES		
Suction vessel gas pressure Discharge vessel gas pressure	P _{suc_vessel}	1 barg 2 barg
STATIC HEADS		
Suction static head Discharge static head	H _{suc_static_head}	2 m 120 m

PIPELINES

		Suction Line	Discha	rge Line	
Pipe nominal diameter		4 🗸	3	~	inch
Pipe schedule		Sch 40 💙	Sch 40	~	
Pipe internal diameter	d	102.26	7	7.92	mm
Pipe length	L	10	-	150	m
Absolute roughness	е	0.046	0.	046	mm

OUTPUTS

Volumetric flow rate

Q

30.060 m3/hr

		Suction Line	Discharge Line	
Relative roughness	e:d	0.00045	0.00059	
Flow area	Α	0.00821	0.00477	m2
Velocity	u	1.02	1.75	m/s
Reynolds No.	Re	103758	136170	
Flow regime		turbulent	turbulent	
Friction factor	f	0.02011	0.02010	
Pipe velocity head loss	K _{pipe}	1.966	38.695	
Fittings total velocity head loss	K _{fittings}	1.724	2.152	
Frictional pressure loss		0.02	0.62	bar
Frictional head loss	H _{friction}	0.19	6.38	m

Pump suction pressure	P _{suction}	2.19 bara
Pump suction head	H	22.37 m
Pump discharge pressure	Pdischarge	15.39 bara
Pump discharge head	H _{discharge}	157.16 m
Net positive suction pressure available	PNPSHA	2.17 bara
Net positive suction head available	NPSHa	22.13 m
Pump total differential pressure	ΔP _{pump}	13.20 bar
Pump total differential head	Hpump	134.79 m
Pump absorbed power	E	15.74 kW

PE0263 - Page 15 of 18

Results of above calculations may be confirmed through either of followinglinks:

https://www.swagelok.com/en/toolbox/cv-calculator

https://experttoolsonline.com/danfoss/orifice_calculator

https://www.efunda.com/formulae/fluids/calc_orifice_flowmeter.cfm

https://www.omnicalculator.com/physics/coefficient-of-discharge

Power Calculations: https://inventory.powerzone.com/resources/centrifugalpump-powercalculator/%3Aflu%3DGPM%3Apru%3DHEAD%20FT%3Apu% 3DHP

http://irrigation.wsu.edu/Content/Calculators/General/Required-Water-Pump-HP.php

Required Compressor Horsepower

https://www.engineeringtoolbox.com/horsepower-compressed-air-d_1363.html

Input Data		Output Results	
T1, F	60		
к	1.35	Compression Ratio	34.014
P1, psi	14.7	Cp, J/kg/K	1107
P2, psi	500	Gas, cfm	36791.50
Gas sp.gr.	1	•	
No. of Comp. stages	3	Gas, kg/s	21.250
Gas million SCMD	1.5	Theoretical Power, HP	9731.847
Eff. of Gas Comp., %	85		10701.07
Eff. of Driving Motor, %	90	Total Required HP	12721.37

Heater Duty

https://www.advantageengineering.com/fyi/288/advantageFYI288.php

		Output Results	
Input Data		Delta Temp., C	15.6
input butu		Mega Watt	0.220
Million DTU/hr	0.75	Billion Joule/hr.	0.791
Million BTU/hr.	0.75	gpm	25.0
A DI	10.0	gallon/hr.	1498.4
API	10.0	Lit./min.	94.5
Constitution DTU/lb/F	1 00	m3/hr.	5.7
Specific Heat, BTU/lb/F	1.00	1000 bbl/d	0.856
Dalta Tanan - C	C 0	Required Diesel Lit./day	502.90
Delta Temp., F	60	Required Diesel bbl/d	3.16
Heater Fff 0/	100	Required Gas, 1000 ft3/d	16.364
Heater Eff., %	100	Required crude oil, bbl/d	3.268

https://www.enggcyclopedia.com/2011/09/problem-solving-heat-exchanger-tubesidepressure-drop-calculation/

PE0263 - Page 16 of 18

Input Data		Output Results	
Mass Flow Rate, kg/hr.	2000.0	cm3/s	562.303
Fluid Density, Kg/m3	988.0	V, cm/s	110.9720
Visc., c.P.	0.53	Re	52544.59
Pipe Diameter (D), in.	1	f	0.0261
Roughness (E), mm	0.045	Total Hf, cm (per single tube)	22.5583
Tube Length, m	3.5	Total Hf, psi (per single tube)	0.3166
No. of tubes	1	Total Hf, bar (per single tube)	0.0218

Heat exchanger tube side pressure drop calculation

Calculate the tube side pressure drop for the following heat exchanger specification,

Process fluid = water Inlet pressure = 4 barg Inlet temperature = 50°C Outlet temperature = 30°C Tubeside flowrate = 50000 kg/hr Number of tubes = 25 Tube ID (internal diameter) = 1 inch Tube length = 3.5 m

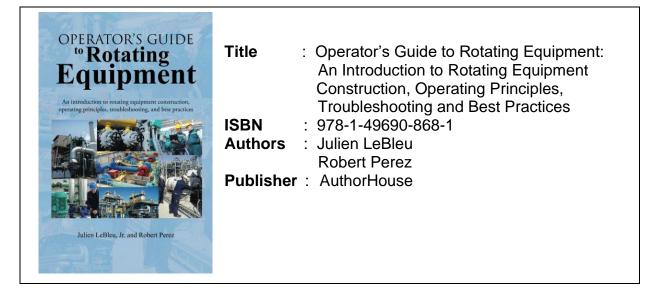
Total volumetric flow = 50000 kg/hr ÷ 988.0 kg/m³ = 50.61 m³/hr Volumetric flow in each 1" tube = 50.61 ÷ 25 = 2.02 m³/hr Pressure loss per unit length of the tube is then calculated using EnggCyclopedia's pressure drop calculators for pipes and tubes. This calculator is based on Darcy-Weisbach equation.

Pressure loss across a single tube ($\Delta P/L$) = 6.17 bar/km

$(\Delta F/L) = 0.17 \text{ bar/km}$		
SINGLE PHASEFLOW INPUTS		
W – <u>Mass</u> flow capacity	2000	kg/h
$\rho - \underline{Density}$ of fluid	988	kg/m ³
$\mu - \underline{\text{Viscosity}}$ of fluid (either liquid or gas)	0.53	cP
PIPE SPECIFICATIONS		
e – Effective roughness of the pipe	0.045	mm
d – Nominal diameter of the pipe	1	inches
sch – pipe schedule	STD	
Calculate pressure loss	Reset	
RESULTS		
Fluid Velocity	1.110	<u>m/s</u>
Volumetric flow	2.02	m ³ /hr
Reynold's No.	52557.9	
Pressure loss	6.1715	<u>bar</u> /km

Tube length (L) = 3.5 m Tubeside pressure drop (ΔP) = 6.17 × 3.5 / 1000 = 0.0216 bar

PE0263 - Page 17 of 18


Another alternative is to directly use EnggCyclopedia's Heat Exchanger Tube side Pressure Drop Calculator. All the inputs given in the sample problem statements are given to the calculator and pressure drop across the tubeside is calculated as output. This calculator uses the same basic steps discussed above and hence the answer also matches with the figure above (0.0216 bar). The following image is a snapshot of this direct calculation of tubeside pressure drop.

Exchanger tubeside pressure drop

Tubeside inputs		
Total tubeside mass flow	50000	kg/hr
Tubeside Density	988	kg/m ³
Tubeside Viscosity	0.53	cP
Number of tubes	25	
Total tube length (accounting for all tube passes)	3.5	m
Tube nominal diameter	1	inches
Tubeside roughness	0.045	mm
Calculate pressure drop	Reset	
Results		
Tubeside pressure drop	0.0216	bar

Book(s)

As part of the course kit, the following e-book will be given to all participants:

Course Coordinator

Kamel Ghanem, Tel: +971 2 30 91 714, Email: kamel@haward.org

PE0263 - Page 18 of 18

