

COURSE OVERVIEW ME0489 Inspect and Maintain Safeguarding Vent and Relief Systems

Course Title

Inspect and Maintain Safeguarding Vent and Relief Systems

Course Date/Venue

February 25-29, 2024/The Mouna Meeting Room, The H Dubai Hotel, Sheikh Zayed Rd - Trade Centre, Dubai, UAE

Course Reference ME0489

Five days/3.0 CEUs/30 PDHs

Course Duration/Credits

Course Description

practical and highly-interactive This includes various practical sessions and exercises. Theory learnt will be applied using our state-ofthe-art simulators.

This course is designed to provide participants with a fundamental overview of Inspect & Safeguarding Vent & Relief Systems. It covers the key purpose and operation of safeguarding vent and relief systems; the equipment safety and operational efficiency; the types of safeguarding vent and relief system devices; the devices specific to the location, common devices used globally and the function and application of each device; the parts and roles of system components in the overall system and the maintenance requirements for each component; the typical operating parameters/limits; and the safe procedures isolation and equipment/plant inspection.

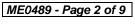
During this interactive course, participants will learn the inspection methodologies and procedures; the routine checks and use of tools, devices and software for inspection; the technical drawings, specifications and their importance in installation and maintenance: scheduled maintenance versus need-based maintenance: the regular system checks. documentation and safe isolation and inspection; the new and emerging technologies in the field; the system components and safety protocols; and emergency documentation responses, and compliance.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain a basic knowledge on inspect and maintain safeguarding vent and relief systems
- Explain the tasks related to inspect and maintain safeguarding vent and relief systems
- Explain the key purpose of and how a safeguarding vent and relief system operates
- Demonstrate safe isolation of equipment/plant for the inspection of safeguarding vent and relief systems
- Explain what types of safeguarding vent and relief system devices used at own location and explain their function
- Explain the typical operating parameters/limits for safeguarding vent and reliefs systems
- Demonstrate the correct installations of safeguarding vent and relief systems from drawings and specifications
- Discuss the key purpose and operation of safeguarding vent and relief systems
- Maintain equipment safety and operational efficiency
- Recognize the types of safeguarding vent and relief system devices as well as the devices specific to the location, the common devices used globally and the function and application of each device
- Identify the parts and roles of system components in the overall system and the maintenance requirements for each component
- Discuss the typical operating parameters/limits and apply safe isolation procedures and equipment/plant for inspection
- Carryout inspection methodologies and procedures including routine checks and use of tools, devices and software for inspection
- Read and interpret technical drawings as well as the specifications and their importance in installation and maintenance
- Differentiate scheduled maintenance versus need-based maintenance and apply regular system checks and documentation
- Employ safe isolation and inspection and discuss the new and emerging technologies in the field
- Calibrate and test system components as well as implement safety protocols, emergency responses, documentation and compliance

Exclusive Smart Training Kit - H-STK®


Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a Tablet PC.

Who Should Attend

This course provides a fundamental overview of the inspection and maintenance of safeguarding vent and relief systems for engineers, maintenance technicians, safety personnel, operations personnel, compliance and regulatory personnel, managers, supervisors, environmental specialists and health and safety inspectors.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC) BAC

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Ahmed El-Sayed, PhD, MSc, BSc, is a Senior Electrical & Instrumentation Engineer with over 30 years of extensive experience in the Oil, Gas, Power, Petroleum, Petrochemical and Utilities. He specializes in Instrumentation Protection Devices Maintenance & Testing, Protection Devices Troubleshooting, DCS & ESD System Architecture, Distributed Control System, DCS & SCADA, Distributed Control System (DCS) Selection & Troubleshooting, Advanced DCS Yokogawa, Yokogawa CENTUM VP DCS, Modern Distributed Control System (DCS) & Process Instrumentation, Cyber Security of Industrial System, DCS System (Honeywell), DCS Experion System, DCS Siemens Telepherm XP, Relay Coordination Using ETAP Software, Power System

Study on ETAP, ETAP-Power System Analysis, Flow Measurement Foundation, Hydrocarbon Measurement & Sampling, Gas Dosiers Preparation, Gas/Liquid Fuel Measurement, Instrumentation Measurement & Control System, Flow Measurement, Pressure Measurement, Level & Temperature Measurement, Measurement Devices & Control System, Instrumentation & Control Systems, Control System Orientation, Uninterruptible Power Supply (UPS) Battery Charger, Industrial UPS Systems Construction & Operation, Test Lead-Acid & Ni-cad Battery Systems, Hazards & Safe Work Practices, Transformer Operational Principles, Selection & Troubleshooting; HV & LV Transformers, Control Valves & Actuators, Electrical Safety, Protection Relay Application, Maintenance & Testing, NEC (National Electrical Code), NESC (National Electrical Safety Code), Electrical Safety, Electrical Hazards Assessment, Electrical Equipment, Personal Protective Equipment, Lock-Out & Tag-Out (LOTO), Confined Workspaces, Alerting Techniques, Electrical Transient Analysis Program (ETAP), Power Quality, Power Network, Power Distribution, Distribution Systems, Power Systems Control, Power Systems Security, Power Electronics, Electrical Substations, UPS & Battery System, Earthing & Grounding, Power Generation, Protective Systems, Electrical Generators, Power & Distribution Transformers, Electrical Motors, Switchgears, Transformers, AC & DC Drives, Variable Speed Drives & Generators, Generator Protection, GE Gas Turbines, PLC, SCADA, DCS, Process Control, Control Systems & Data Communications, Instrumentation, Automation, Valve Tuning, SIS, SIL, ESD, Alarm Management Systems, Engine Management System, Bearing & Rotating Machine, Fieldbus Systems and Fiber Optics Technology. He is currently the Systems Control Manager of Siemens where he is in-charge of Security & Control of Power Transmission Distribution & High Voltage Systems and he further takes part in the Load Records Evaluation & Transmission Services Pricing.

During his career life, Dr. Ahmed has been actively involved in different Power System Activities including Roles in Power System Planning, Analysis, Engineering, HV Substation Design, Electrical Service Pricing, Evaluations & Tariffs, Project Management, Teaching and Consulting. His vast industrial experience was honed greatly when he joined many International and National Companies such as Siemens, Electricity Authority and ACETO industries as the Instrumentation & Electrical Service Project Manager, Instrumentation & Control Engineer, Energy Management Engineer, Department Head, Assistant Professor, Instrumentation & Control Instructor, Project Coordinator, Project Assistant and Managing Board Member where he focused more on dealing with Technology Transfer, System Integration Process and Improving Localization. He was further greatly involved in manufacturing some of Power System and Control & Instrumentation Components such as Series of Digital Protection Relays, MV VFD, PLC and SCADA System with intelligent features.

Dr. Ahmed is well-versed in different electrical and instrumentation fields like **ETAP**, Load Management Concepts, **PLC** Programming, Installation, Operation and Troubleshooting, **AC Drives** Theory, Application and Troubleshooting, Industrial Power Systems Analysis, AC & DC Motors, Electric Motor Protection, DCS SCADA, Control and Maintenance Techniques, Industrial Intelligent Control System, **Power Quality** Standards, Power Generators and Voltage Regulators, Circuit Breaker and Switchgear Application and Testing Techniques, **Transformer** and **Switchgear** Application, Grounding for Industrial and Commercial Assets, Power Quality and **Harmonics**, **Protective Relays** (O/C Protection, Line Differential, Bus Bar Protection and **Breaker Failure Relay**) and Project Management Basics (PMB).

Dr. Ahmed has PhD, Master & Bachelor degrees in Electrical Engineering from the University of Wisconsin Madison, USA and Ain Shams University, respectively. Further, he is a Certified Instructor/Trainer, a Certified Internal Verifier/ Assessor/Trainer by the Institute of Leadership and Management (ILM), an active member of IEEE and ISA as well as numerous technical and scientific papers published internationally in the areas of Power Quality, Superconductive Magnetic Energy Storage, SMES role in Power Systems, Power System Blackout Analysis, and Intelligent Load Shedding Techniques for preventing Power System Blackouts, HV Substation Automation and Power System Stability.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met

Day 1: Sunday, 25th of February 2024

Day 1:	Sunday, 25" of February 2024
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Overview of Safeguarding Vent & Relief Systems
	Definition & Purpose ● Importance in Industrial Settings
0930 - 0945	Break
	Key Purpose & Operation of Safeguarding Vent & Relief Systems
0945 - 1030	Role in Maintaining Equipment Safety & Operational Efficiency • Operating
	Principles
	Types of Safeguarding Vent & Relief System Devices
1030 - 1230	Devices Specific to your Location • Introduction to Common Devices Used
	Globally • Function & Application of Each Device
1230 - 1245	Break
1245 – 1420	System Components & their Functions
	Parts & their Roles in the Overall System • Maintenance Requirements for
	Each Component
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day One

Day 2: Monday, 26th of February 2024

Day 2:	Monday, 26" of February 2024
0730 - 0930	Introduction to Typical Operating Parameters/Limits
	Rationale Behind Set Parameters/Limits • Importance of Adhering to these
	Parameters
0930 - 0945	Break
0945 – 1100	Interactive Session: Identifying System Components on Site
	Field Walk to Identify & Understand the Components in a Real-World Setting
1100 – 1230	Safe Isolation of Equipment/Plant for Inspection
1100 - 1230	Procedures & Precautions ● Tools & Equipment Required for Safe Isolation
1230 - 1245	Break
1245 - 1420	Inspection Methodologies & Procedures
	Routine Checks & Comprehensive Inspections ● Use of Tools, Devices &
	Software for Inspection
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3: Tuesday, 27th of February 2024

0730 - 0930	Understanding Drawings & Specifications
	Reading & Interpreting Technical Drawings • Understanding Specifications &
	their Importance in Installation & Maintenance
0930 - 0945	Break

0945 - 1100	Demo: Correct Installation from Drawings & Specifications
	Hands-On Session on System Installation ● Identifying Potential Challenges &
	their Solutions
1100 - 1230	Maintenance Protocols & Best Practices
	Scheduled Maintenance Versus Need-Based Maintenance
1230 - 1245	Break
1245 - 1420	Maintenance Protocols & Best Practices (cont'd)
	Importance of Regular System Checks & Documentation
	Recap
1420 – 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

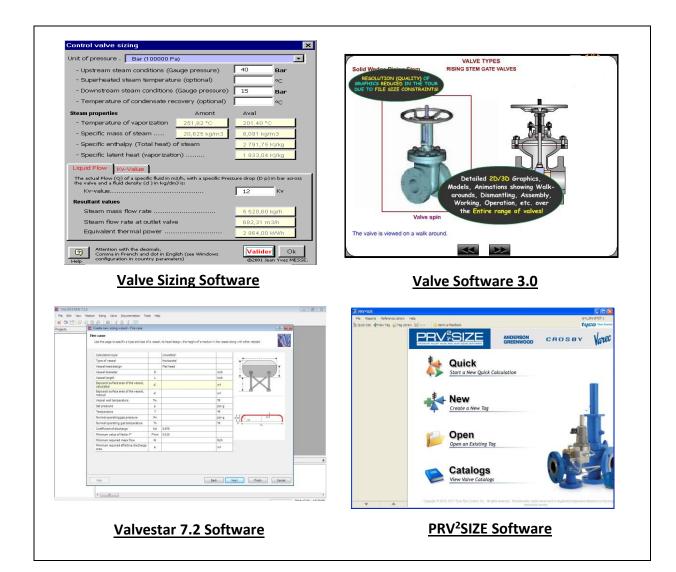
Day 4: Wednesday, 28th of February 2024

Day 4:	wednesday, 28" of February 2024
0730 - 0930	Case Study: A Real-World Incident Involving System Failure
	Analyzing What Went Wrong • Lessons Learned & Preventive Measures
0930 - 0945	Break
0945 - 1100	Safe Isolation & Inspection
	Participants Practice Safe Isolation Procedures • Hands-on Inspection of
	Safeguarding Vent & Relief Systems
1100 - 1230	Advanced Devices & Technologies
	Introduction to New & Emerging Technologies in the Field
1230 - 1245	Break
1245 - 1420	Advanced Devices & Technologies (cont'd)
	Benefits & Challenges Associated with their Adoption
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Four

Day 5: Sunday, 29th of February 2024

Day 5.	Sullday, 29 Of February 2024
0730 - 0930	Calibration & Testing of System Components
	Procedures & Importance of Regular Calibration • Hands-On Session on
	Calibration Tools & Techniques
0930 - 0945	Break
0945 - 1100	Safety Protocols & Emergency Responses
	Best Practices to Ensure Worker Safety • Emergency Procedures in Case of
	System Failures or Breaches
1100 - 1230	Documentation & Compliance
	Importance of Proper Record-Keeping
1230 - 1245	Break
1245 - 1345	Documentation & Compliance (cont'd)
	Meeting Industrial Compliance & Standards
	Course Conclusion
1345 - 1400	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 – 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

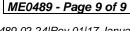
Valve Demo Kit
Practical session will be organized during the course for delegates to practice the theory learnt.



Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the state-of-the-art "Valve Sizing Software", "Valve Software 3.0", "Valvestar 7.2 Software" and "PRV2SIZE Software".

Course Coordinator


Kamel Ghanem, Tel: +971 2 30 91 714, Email: kamel@haward.org

