COURSE OVERVIEW DE0385 Petrel Mapping & Geological Workflow

Course Title

Petrel Mapping & Geological Workflow

Course Reference

DE0385

Course Duration/Credits


Five days/3.0 CEUs/30 PDHs

Course Date/Venue

Constitution (material)	99	
	Tappi	Parent.

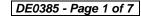
Session(s)	Date	Venue
1	March 03-07, 2024	
2	May 19-23, 2024	Oryx Meeting Room, DoubleTree By Hilton Doha-
3	September 22-26, 2024	
4	November 10-14, 2024	

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Petrel Mapping & Geological Workflow. It covers the capabilities of Petrel software in geological modeling and navigating Petrel interface; importing geological data and creating simple geological maps and effective ways to visualize geological data; the base maps and grids for geological mapping and systematic techniques for creating contour and surface maps; and the fault modeling and representation and the three-dimensional geological models.

During this interactive course, participants will learn the integration of seismic data with geological maps; the volume calculations and resource estimations using Petrel; the basics of petrophysical analysis and techniques for analyzing well logs; the methods for modeling properties like porosity and permeability and utilizing crossplots for data incorporating core analysis interpretation; data geological models and the basics of workflow development in Petrel; creating automated workflows for geological tasks and customizing workflows for specific projects; the best practices for efficient workflow development and scripting for advanced workflow automation; integrating geological models with reservoir simulation; the quality control and validation of geological models; the impactful reports and presentations of geological models; and the best practices in geological modelling and mapping.



Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on Petrel mapping and geological workflow
- Discuss the capabilities of Petrel software in geological modeling and navigate the Petrel interface
- Import geological data and create simple geological maps and effective ways to visualize geological data
- Create base maps and grids for geological mapping and apply systematic techniques for creating contour and surface maps
- Illustrate fault modeling and representation and three-dimensional geological models
- Integrate seismic data with geological maps and carryout volume calculations and resource estimations using Petrel
- Recognize the basics of petrophysical analysis and discuss the techniques for analyzing well logs
- Implement methods for modeling properties like porosity and permeability and utilize crossplots for data interpretation
- Incorporate core analysis data into geological models and discuss the basics of workflow development in Petrel
- Create automated workflows for geological tasks and customize workflows for specific projects
- Carryout best practices for efficient workflow development and scripting for advanced workflow automation
- Integrate geological models with reservoir simulation and quality control and validation of geological models
- Create impactful reports and presentations of geological models and best practices in geological modelling and mapping

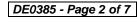
Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of Petrel mapping and geological workflow for geologists, geophysicists, reservoir engineers, petroleum engineers, data analysts, managers and decision makers and those who are involved in subsurface exploration and reservoir management.

Course Fee


US\$ 8,500 per Delegate. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

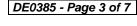
Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Accommodation


Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Chris Kapetan, PhD, MSc, is a Senior Drilling & Petroleum Engineer with 40 years of international experience within the onshore and offshore oil & gas industry. His wide experience covers Cased Hole Logging Interpretation, Cased Hole Formation Evaluation, Cased Hole Applications, Data Acquisition in Cased-hole Logging, Drill String Design & Drilling Optimization, Drill String Design Calculations, Enhanced Oil Recovery (EOR), Improved Oil Recovery (IOR), Performance Analysis, Prediction, and Optimization Using NODAL Analysis, Stuck Pipe Prevention, Stuck Piping & Fishing Operation, Fishing Operations, Fishing Techniques, Fishing Methodologies, Wireline

Fishing Procedures, Wireline & Coil Tubing, Coiled Tubing Fishing Operation, Coiled Tubing Technology, Fishing Options in Horizontal Wells, Horizontal & Multilateral Wells, Well Completion & Stimulation, Artificial Lift System Selection & Design, Drilling Practices, Drilling Fluids Technology, Drilling Operations, Simulation Program for The International Petroleum Business, International Oil Supply, Transportation, Refining & Trading, Control Well-Flow Lines Parameters, Decision Analytic Modelling Methods for Economic Evaluation, Probabilistic Risk Analysis (Monte Carlo Simulator) Risk Analysis Foundations, Global Oil Demand, Crude Oil Market, Global Oil Reserves, Oil Supply & Demand, Governmental Legislation, Contractual Agreements, Financial Modeling, Oil Contracts, Project Risk Analysis, Feasibility Analysis Techniques, Capital Operational Costs, Oil & Gas Exploration Methods, Reservoir Evaluation, Extraction of Oil & Gas, Crude Oil Types & Specifications, Sulphur, Sour Natural Gas, Natural Gas Sweeting, Petroleum Production, Field Layout, Production Techniques & Control, Surface Production Operations, Oil Processing, Oil Transportation-Methods, Flowmetering & Custody Transfer and Oil Refinery. Further, he is also well-versed in Enhanced Oil Recovery (EOR), Electrical Submersible Pumps (ESP), Oil Industries Orientation, Geophysics, Production Operations, Production Management, Perforating Methods & Design, Perforating Operations, Fishing Operations, Well & Reservoir Testing, Reservoir Stimulation, Hydraulic Fracturing, Carbonate Acidizing, Sandstone Acidizing, Petroleum Business, Petroleum Economics, Field Development Planning, Gas Lift Valve Changing & Installation, Well Completion Design & Operation, Well Surveillance, Well Testing, Well Stimulation & Control and Workover Planning, Completions & Workover, Rig Sizing, Hole Cleaning & Logging, Well Completion, Servicing and Work-Over Operations, Practical Reservoir Engineering, X-mas Tree & Wellhead Operations, Advanced Petrophysics/Interpretation of Well Composite, Construction Integrity & Completion, Corrosion Control, Slickline, Pipeline Pigging, Corrosion Monitoring, Cathodic Protection as well as Root Cause Analysis (RCA), Root Cause Failure Analysis (RCFA), Gas Conditioning & Process Technology, Production Safety and Delusion of Asphalt. Currently, he is the Operations Consultant & the Technical Advisor at GEOTECH and an independent Drilling Operations Consultant of various engineering services providers to the international clients as he offers his expertise in many areas of the drilling & petroleum discipline and is well recognized & respected for his process and procedural expertise as well as ongoing participation, interest and experience in continuing to promote technology to producers around the world.

Throughout his long career life, Dr. Chris has worked for many international companies and has spent several years managing technically complex wellbore interventions in both drilling & servicing. He is a well-regarded for his process and procedural expertise. Further, he was the Operations Manager at ETP Crude Oil Pipeline Services where he was fully responsible for optimum operations of crude oil pipeline, workover and directional drilling, drilling rigs and equipment, drilling of various geothermal deep wells and exploration wells. Dr. Chris was the Drilling & Workover Manager & Superintendent for Kavala Oil wherein he was responsible for supervision of drilling operations and offshore exploration, quality control of performance of rigs, coiled tubing, crude oil transportation via pipeline and abandonment of well as per the API requirements. He had occupied various key positions as the Drilling Operations Consultant, Site Manager, Branch Manager, Senior Drilling & Workover Manager & Engineer and Drilling & Workover Engineer, Operations Consultant, Technical Advisor in several petroleum companies responsible mainly on an **offshore** sour oil field (under water flood and gas lift) and a gas field. Further, Dr. Chris has been a **Professor** of the **Oil Technology College**.

Dr. Chris has PhD in Reservoir Engineering and a Master's degree in Drilling & Production Engineering from the Petrol-Gaze Din Ploiesti University. Further, he is a Certified Surfaced BOP Stack Supervisor of IWCF, a Certified Instructor/Trainer, a Certified Trainer/Assessor/Internal Verifier by the Institute of Leadership & Management (ILM) and has conducted numerous short courses, seminars and workshops and has published several technical books on Production Logging, Safety Drilling Rigs and Oil Reservoir.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the workshop for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

Day I	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Overview of Petrel Software: Its Capabilities in Geological Modeling
0930 - 0945	Break
0945 - 1030	Navigating the Petrel Interface: Understanding the Workspace, Tools &
	Navigation
1030 - 1130	Data Import & Management : Best Practices for Importing Geological Data
1130 – 1215	Basic Mapping Techniques in Petrel: Creating Simple Geological Maps
1215 – 1230	Break
1230 - 1330	Visualization Tools in Petrel: Effective Ways to Visualize Geological Data
1330 - 1420	Creating Base Maps & Grids: Fundamentals of Grid Creation for Geological
	Mapping
1420 - 1430	Recap
1430	Lunch & End of Day One

Day 2

0730 - 0830	Contouring & Surface Mapping : Techniques for Creating Contour & Surface Maps
0830 - 0930	Fault Modeling & Representation : Accurately Modeling Faults in Geological Maps
0930 - 0945	Break
0945 - 1100	3D Geological Modeling: Building Three-Dimensional Geological Models
1100 – 1215	Integrating Seismic Data with Geological Maps: Combining Seismic Interpretation with Geological Mapping
1215 - 1230	Break
1230 - 1330	Volume Calculations & Estimations : Using Petrel for Resource Estimation
1330 - 1420	Case Studies: Real-World Examples of Geological Mapping in Petrel
1420 - 1430	Recap
1430	Lunch & End of Day Two

Day 3

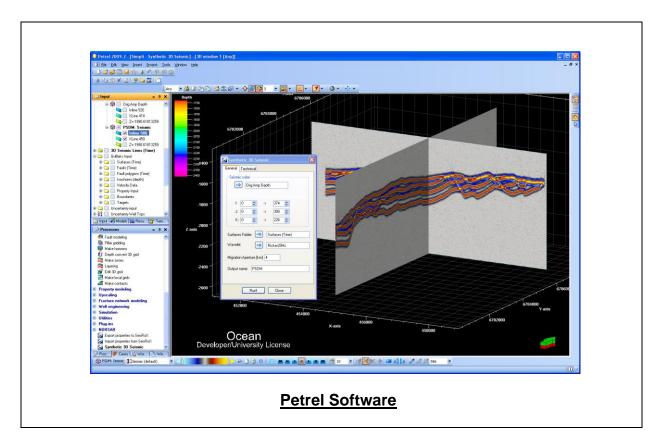
0730 - 0830	Petrophysical Modeling : The Basics of Petrophysical Analysis
0830 - 0930	Well Log Interpretation & Analysis: Techniques for Analyzing Well Logs
0930 - 0945	Break
0945 - 1100	Petrophysical Property Modeling : Methods for Modeling Properties Like Porosity and Permeability
1100 – 1215	Crossplot Analysis: Utilizing Crossplots for Data Interpretation
1215 - 1230	Break
1230 – 1330	Integrating Core Data: Incorporating Core Analysis Data into Geological Models
1330 - 1420	Practical Exercise : Petrophysical Modeling Based on Real Data
1420 - 1430	Recap
1430	Lunch & End of Day Three

Day 4

Day 4	
0730 - 0830	Workflows in Petrel: Basics of Workflow Development
0830 - 0930	Automating Geological Processes: Creating Automated Workflows for Geological Tasks
0930 - 0945	Break
0945 – 1100	Customizing Workflows for Specific Projects: Tailoring Workflows to Project Needs
1100 – 1215	Efficiency Tips & Tricks in Workflow Creation : Best Practices for Efficient Workflow Development
1215 – 1230	Break
1230 - 1330	Scripting for Advanced Workflow Automation: Scripting within Petrel
1330 – 1420	Group Activity: Developing a Custom Workflow for a Geological Task
1420 - 1430	Recap
1430	Lunch & End of Day Four

Day 5

Duy U	
0730 - 0830	Integrating Geological Models with Reservoir Simulation : Techniques for Combining Static & Dynamic Models
0830 - 0930	Quality Control & Validation of Geological Models : Ensuring Accuracy & Reliability
0930 - 0945	Break
0945 - 1100	Effective Reporting & Presentation of Geological Models: Creating Impactful Reports & Presentations
1100 - 1230	Best Practices in Geological Modeling & Mapping : Consolidating Key Methodologies & Approaches
1230 - 1245	Break
1245 – 1345	Emerging Trends in Geological Modeling & Software Technologies: Discussing Future Developments in the Field
1345 - 1400	Course Conclusion
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course



Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the "Petrel" software.

Course Coordinator

Jaryl Castillo, Tel: +974 4423 1327, Email: jaryl@haward.org

