

COURSE OVERVIEW PE0382 Heat Exchangers & Fired Heaters

O CEUS

(30 PDHs)

AWAT

Course Title

Heat Exchangers & Fired Heaters

Course Reference

PE0382

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Date/Venue

Session(s)	Date	Venue
1	April 21-25, 2024	Kizkulesi, Crown Plaza Istanbul Asia Hotels & Convention Center, Istanbul, Turkey
2	June 02-06, 2024	Oryx Meeting Room, Doubletree By Hilton Doha-Al Sadd, Doha, Qatar
3	September 08-12, 2024	The Kooh Al Noor Meeting Room, The H Dubai Hotel, Sheikh Zayed Rd - Trade Centre, Dubai, UAE
4	January 13-17, 2025	Hampstead Meeting Room, London Marriott Hotel Regents Park, London, United Kingdom

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-theart simulators.

This course is designed to provide the participants with a detailed and up-to-date overview on the operation and troubleshooting of heat exchangers and fired heaters. Participants will be able to respond to typical heat exchanger and fired heater problems that may occur during operation. The course will also cover the principles of heat transfer and the factors affecting heat transfer; the flow arrangements of fluids inside heat exchangers; and the various types and its major components.

During this course, participants will learn to apply the proper procedure in taking out of service and putting in service of heat exchangers; identify the various types of furnaces and the major parts of a horizontal and vertical furnace; recognize the types of gas burner and its properties; apply combustion process; employ furnace start up, shutdown and troubleshooting; identify the thin tube, hot spot, tube fire side heater, furnace explosion, flame temperature, flame stability and combustion.

PE0382 - Page 1 of 8

PE0382-04-24|Rev.245|15 February 2024

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Operate and troubleshoot heat exchangers and fired heaters in a professional manner
- Discuss the principles of heat transfer and the factors affecting heat transfer
- Illustrate flow arrangements of fluids inside heat exchangers and identify the types and its major components
- Apply proper procedure in taking out of service and putting in service of heat exchangers
- List the various types of furnaces and identify the major parts of a horizontal and vertical furnace
- Enumerate the types of gas burner and describe its properties as well as combustion process
- Employ furnace start up, shutdown and troubleshooting
- Identify thin tube, hot spot, tube fire side heater, furnace explosion, flame temperature, flame stability and combustion

Who Should Attend

This course provides an overview of all significant aspects and considerations of heat exchangers and fired heaters operation for process engineers, section heads, shift controllers, shift supervisors, operators and for those who are interested in heat exchangers and furnaces.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours: -

- 30% Lectures
- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

PE0382 - Page 2 of 8

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:-

<u>The International Accreditors for Continuing Education and Training</u> (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

• ***

BAC British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

PE0382 - Page 3 of 8

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Karl Thanasis, PEng, MSc, MBA, BSc, is a Senior Engineer with over 30 years of practical experience within the Oil, Gas, Refinery and Petrochemical industries. His wide expertise includes Process Plant Optimization Technology & Continuous Improvement, Process Engineering Calculations, Process Plant Start Up & Commissioning, Applied Process Engineering Elements, Coke Cooler, Process Plant Start-up & Commissioning, Process Plant Troubleshooting, **Operations Abnormalities & Plant Upset, Process Equipment**

Applications & Troubleshooting, Process Plant Performance & Efficiency, Gas Sweetening & Sulphur Recovery, Distillation-Column Control & Troubleshooting, Oil Movement & Troubleshooting, Process Plant Operations & Control, Process Equipment Operation, Fired Heaters & Air Coolers Maintenance, Heat Exchangers, Pumps & Compressors, Crude Desalter, Pressure Vessels & Valves, Steam **Pumps & Valve** Maintenance & Troubleshooting. Trapping & Control. Turbomachinery, Mechanical Alignment, Rotating Equipments, Diesel Generators, Lubrication Technology, Bearing, Predictive & Preventive Maintenance, Root Cause Analysis, Boilers, Oil Field Operation, Production Operation, Plant Operation & Commissioning, Crude Oil De Salting Process, Gas Conditioning, NGL Recovery & NGL Fractionation, Flare System, Storage Tanks, Oil Recovery System and Chemical Injection.

Mr. Thanasis has acquired his thorough and practical experience as the Project Manager, Plant Manager, Area Manager - Equipment Construction, Construction Superintendent, Project Engineer and Design Engineer. His duties covered Plant Preliminary Design, Plant Operation, Write-up of Capital Proposal, Investment Approval, Bid Evaluation, Technical Contract Write-up, Construction and Subcontractor Follow up, Lab Analysis, Sludge Drying and Management of Sludge Odor and **Removal**. He has worked in various companies worldwide in the USA, Germany, England and Greece.

Mr. Thanasis is a Registered Professional Engineer in the USA and Greece and has a Master and Bachelor degrees in Mechanical Engineering with Honours from the Purdue University and SIU in USA respectively as well as an MBA from the University of Phoenix in USA. Further, he is a Certified Internal Verifier/Trainer/Assessor by the Institute of Leadership & Management (ILM) and a Certified Instructor/Trainer.

Course Fee

Istanbul	US\$ 6,000 per Delegate + VAT . This rate includes Participants Pack (Folder, Manual, Hand-outs, etc.), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Doha	US\$ 6,000 per Delegate. This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Dubai	US\$ 5,500 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
London	US\$ 8,800 per Delegate + VAT . This rate includes Participants Pack (Folder, Manual, Hand-outs, etc.), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

PE0382 - Page 4 of 8

<u>Course Program</u> The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Dav 1

Day I	
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 – 0915	Heat Exchangers Introduction to Heat Exchangers • Principles of Heat Transfer • Factors Affecting Heat Transfer (Conduction, Convection & Radiation) • Flow Arrangement of Fluids Inside Heat Exchanger • Types of Heat Exchangers • Major Components
0915 - 0930	Break
0930 - 1030	Heat Exchangers (cont'd) Shell & Tube • Fixed Tube Sheet • Floating Tube Sheet • Return Bend Heat Exchanger • Plate Type Heat Exchanger
1030 – 1200	<i>Heat Exchangers (cont'd)</i> <i>Double Type Heat Exchanger • Parallel Flow • Counter Flow • Temperature</i> <i>Approach in Heat Exchanger • LMTD • Correction Factor</i>
1200 - 1215	Break
1215 - 1420	Heat Exchangers (cont'd) Allocation of Fluid in Heat Exchanger • Shell & Tube Passes • Cross Flow Heat Exchanger • Overall Heat Transfer Coefficient
1420 - 1430	Recap
1430	Lunch & End of Day One

Dav 2

Duy Z		
0730 - 0915	Heat Exchangers (cont'd)	
	Principles of Heat Allocation • Corrosion • Fouling • Temperature • Pressure	
0915 - 0930	Break	
	Heat Exchangers (cont'd)	
0930 - 1030	Differential Pressure • Viscosity • Design Considerations • Hair Pin Heat	
	Exchanger • Aerial Cooler	
1020 1200	Heat Exchangers (cont'd)	
1030 – 1200	Main Components • Draft • Louvers • Blades • Vibration	
1200 – 1215	Break	
	Heat Exchangers (cont'd)	
1215 - 1420	Causes & Correction • Fouling Factor • Factors Affecting Heat Transfer •	
	Procedure to Take Heat Exchanger Out of Service • Procedure to Put Heat	
	Exchanger in Service	
1420 – 1430	Recap	
1430	Lunch & End of Day Two	

PE0382 - Page 5 of 8

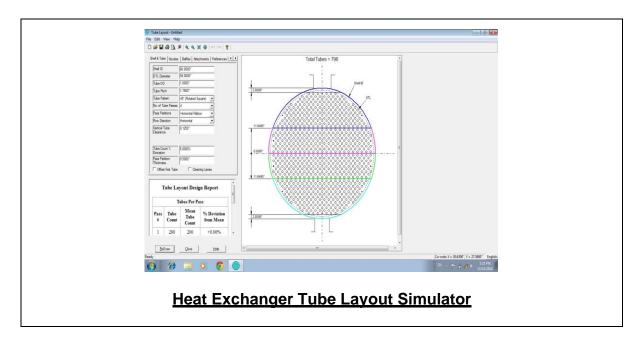
Day 3

	Fired Heaters	
0730 – 0915	<i>Type of Furnaces</i> • <i>Major Parts of a Horizontal Furnace</i> • <i>Major Parts of a</i>	
	Vertical Furnace • Fire Box • Shock Tubes • Radiant Cone	
0915 - 0930	Break	
0020 1020	Fired Heaters (cont'd)	
	Convection Section • Stack Temperature • Causes of High Stack	
0930 – 1030	Temperature • Flue Gas Composition • Burners • Effect of Excess Air on	
	Combustion	
	Fired Heaters (cont'd)	
1030 - 1200	Fuel - Air Ratio • Types of Burners • Gas Burner Construction • Draft	
	Inside Gas Burner • Pre-Mix Gas Burner • Non-Pre-Mix Gas Burner	
1200 – 1215	Break	
	Fired Heaters (cont'd)	
1215 – 1420	Properties of Gas Burner • Draft Inside Gas Burner • Flash Back • Fuel Oil	
1213 - 1420	Burner • Steam - Air Atomising Burner • Combination Burner • Pilot	
	Burner • Burner Management System	
1420 - 1430	Recap	
	Using this Course Overview, the Instructor(s) will Brief Participants about the	
	Topics that were Discussed Today & Advise Them of the Topics to be	
	Discussed Tomorrow	
1430	Lunch & End of Day Three	

Day 4

	Fired Heaters (cont'd)	
0730 – 0915	Combustion Process • Fuel & its Flame Colour • Combustion Losses •	
	Ignition Temperature	
0915 - 0930	Break	
0930 - 1030 1030 - 1200	Fired Heaters (cont'd)	
	Flame Temperature • Excess Air • Combustion Control • NOX Burner	
	Fired Heaters (cont'd)	
	NOX Formation • Furnace Operation • Furnace Draft • Coking	
1200 – 1215	Break	
	Fired Heaters (cont'd)	
1215 - 1420	<i>Ignition</i> • <i>Furnace Operation</i> • <i>High Pressure Fir - Box Furnace</i> • <i>Furnace</i>	
	Tube Life	
1420 - 1430	Recap	
	Using this Course Overview, the Instructor(s) will Brief Participants about the	
	Topics that were Discussed Today & Advise Them of the Topics to be	
	Discussed Tomorrow	
1430	Lunch & End of Day Four	

PE0382 - Page 6 of 8

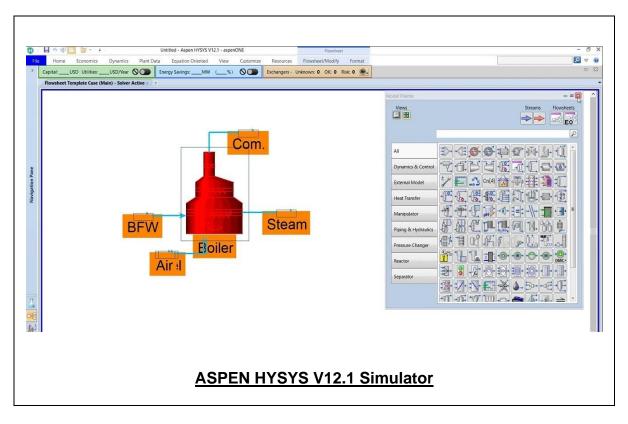


Day	5
-----	---

0730 – 0915	<i>Fired Heaters (cont'd)</i> <i>Furnace Start Up</i> • <i>Maximum Skin Temperature</i> • <i>Flame Distribution</i> • <i>Balance of Flow</i> • <i>Pre-Start Up</i> • <i>Ignition of Burner Under Pressure</i> • <i>Furnace Shut Down</i>	
0915 - 0930	Break	
0930 - 1100	<i>Fired Heaters (cont'd)</i> <i>Furnace Heat – Off • Furnace Emergency Shut Down • Action in the Event</i> <i>of Tube Rupture • Minor Tube Leak • Furnace Typical Operating Problems</i> • <i>Effect of Reduced Air • Absolute Combustion</i>	
1100 – 1200	<i>Fired Heaters (cont'd)</i> <i>Oxygen Starvation</i> • <i>Fir Box & Flame Appearance</i> • <i>Secondary Combustion</i> • <i>Furnace Troubleshooting</i> • <i>Loss of Flame</i> • <i>Flame Control</i> • <i>Heater Tube</i> <i>Failure</i>	
1200 - 1215	Break	
1215 – 1345	<i>Fired Heaters (cont'd)</i> <i>High Temperature Creep</i> • <i>Purge Steam</i> • <i>Identifying Thin Tube & Hot Spot</i> • <i>Tube Fire Side Heater</i> • <i>Furnace Explosion</i> • <i>Flame Temperature</i> • <i>Flame Stability</i> • <i>Combustion</i>	
1345 - 1400	Course Conclusion	
1400 - 1415	POST-TEST	
1415 – 1430	Presentation of Course Certificates	
1430	Lunch & End of Course	

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art simulator "Heat Exchanger Tube Layout" and "ASPEN HYSYS V12.1" simulator.



PE0382 - Page 7 of 8

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

PE0382 - Page 8 of 8

PE0382-04-24|Rev.245|15 February 2024