

COURSE OVERVIEW PE0273 Process & Hydraulic Simulation and Process Design

Course Title

Process & Hydraulic Simulation and Process Design

O CEUS (30 PDHs)

Course Date/Venue

February 18-22, 2024/Hourous Meeting Room, Holiday Inn Suites Maadi, Cairo, Cairo, Egypt

Course Reference

PE0273

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Objectives

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide participants with a detailed and up-to-date overview of Process & Hydraulic Simulation and Process Design. It covers the basics, importance and applications of process simulation; the principles of process modeling, thermodynamic models and selection criteria; the various simulation tools like Aspen HYSYS and PIPESIM; the fluid dynamics, pressure drop calculations and flow assurance; the data for simulation and the difference of dynamic versus steady state simulation and its application; the complex thermodynamic models in process simulations and the techniques for simulating chemical reactors; and the detailed approach to modeling separation processes and heat transfer operations, design and simulation.

Further, the course will also discuss the methods for simulating fluid flow in pipelines, pumping and compression systems; the slug flow and surge analysis in pipelines and the multiphase flow simulation techniques in hydraulics; the pressure relief and flare system design; the methods for optimizing process conditions; and the control systems in process simulations and techniques for energy saving and debottlenecking in process plant.

PE0273 - Page 1 of 18

During this interactive course, participants will learn the cost considerations in process design and optimization; the techniques for effective integration and hydraulic simulations; the risks management in process and hydraulic designs; the sustainability and environmental considerations to enhance safety through design and simulation; and the strategies to manage projects and interdisciplinary teams effectively.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain a good working knowledge on process and hydraulic simulation and process design
- Discuss the basics, importance and applications of process simulation
- Explain the principles of process modeling, thermodynamic models and selection criteria
- Recognize various simulation tools like Aspen HYSYS and PIPESIM
- Identify fluid dynamics, pressure drop calculations and flow assurance
- Gather and interpret data for simulation and differentiate dynamic versus steady state simulation and its application
- Describe complex thermodynamic models in process simulations and employ techniques for simulating chemical reactors
- Determine a detailed approach to modeling separation processes and heat transfer operations, design and simulation
- Apply the methods for simulating fluid flow in pipelines as well as for pumping and compression systems
- Explain slug flow and surge analysis in pipelines and apply multiphase flow simulation techniques in hydraulics
- Illustrate the pressure relief and flare system design as well as apply the methods for optimizing process conditions
- Implement control systems in process simulations and techniques for energy saving and debottlenecking in process plant
- Describe cost considerations in process design and optimization
- Carryout techniques for effective integration and hydraulic simulations as well as identify and manage risks in process and hydraulic designs
- Recognize sustainability and environmental considerations as well as carryout strategies to enhance safety through design and simulation and manage projects and interdisciplinary teams effectively

Who Should Attend

This course provides an overview of all significant aspects and considerations of process and hydraulic simulation and process design for process engineers, chemical engineers, mechanical engineers, petrochemical industry professionals, instrumentation and control engineers, plant operators, process designers, professionals in water treatment and environmental engineering and those who are involved in process engineering, chemical engineering and related fields.

PE0273 - Page 2 of 18

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Course Fee

US\$ 5,500 per Delegate + VAT. This rate includes Participants Pack (Folder, Manual, Hand-outs, etc.), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

PE0273 - Page 3 of 18

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Hesham Abdou, PhD, MSc, PgDip, BSc, is a Senior Process & Petroleum Engineer with 40 years of integrated experience within the Oil & Gas industries. His specialization widely covers in the areas of Artificial Lift System, Artificial Lift Methods, Petroleum Economics, Petroleum Refinery Processing, Refinery Material Balance Calculation, Refinery Gas Treating, Asset Operational Integrity, Drilling Operations, Drilling Rig, Bits & BHA, Mud Pumps, Mud logging Services, Wireline & LWD

Sensors, Casing & Cementing Operation, Completion & Workover Operations, Petroleum Engineering, Production Optimization, Well Completion, Rig & Rigless Workover, Advanced PVT & EOS Characterization, PVT/Fluid Characterization/EOS, Advanced Phase Behaviour & EOS Fluid Characterization, PVT Properties of Reservoir Fluids, Directional Drilling Fundamentals, Application & Limitation, Horizontal & Multilateral Wells (Analysis & Design), Directional, Horizontal & Multilateral Drilling, Root Cause Analysis (RCA), Root Cause Failure Analysis (RCFA), Root Cause Analysis Study, Root Cause Analysis Techniques & Methodologies, Process Hazard Analysis (PHA), Crude Oil Testing & Water Analysis, Crude Oil & Water Sampling Procedures, Equipment Handling Procedures, Crude & Vacuum Process Technology, Gas Conditioning & Processing, Cooling Towers Operation & Troubleshooting, Sucker Rod Pumping, ESP & Gas Lift, PCP & Jet Pump, Pigging Operations, Electric Submersible Pumps (ESP), Progressive Cavity Pumps (PCP), Natural & Artificial Flow Well Completion, Well Testing Procedures & Evaluation, Well Performance, Coiled Tubing Technology, Oil Recovery Methods Enhancement, Well Integrity Management, Well Casing & Cementing, Acid Gas Removal, Heavy Oil Production & Treatment Techniques, Water Flooding, Water Lift Pumps Troubleshooting, Water System Design & Installation, Water Networks Design Procedures, Water Pumping Process, Pipelines, Pumps, Turbines, Heat Exchangers, Separators, Heaters, Compressors, Storage Tanks, Valves Selection, Compressors, Tank & Tank Farms Operations & Performance, Oil & Gas Transportation, Oil & Gas Production Strategies, Artificial Lift Methods, Piping & Pumping Operations, Oil & Water Source Wells Restoration, Pump Performance Monitoring, Rotor Bearing Modelling, Hydraulic Repairs & Cylinders, Root Cause Analysis, Vibration & Condition Monitoring, Piping Stress Analysis, Amine Gas Sweetening & Sulfur Recovery, Heat & Mass Transfer and Fluid Mechanics.

During his career life, Dr. Hesham held significant positions and dedication as the **General Manager**, **Petroleum Engineering Assistant General Manager**, **Workover Assistant General Manager**, **Workover Department Manager**, **Artificial Section Head**, **Oil & Gas Production Engineer** from Agiba Petroleum Company and **Engineering Consultant/Instructor** for various Oil & Gas companies as well as a **Senior Instructor/Lecturer** for **PhD**, **Master & BSc degree students** from **various universities** such as the Cairo University, Helwan University, British University in Egypt, Banha University.

Dr. Hesham has **PhD** and **Master** degrees as well as **Post Graduate Diploma** in **Mechanical Power Engineering** and a **Bachelor** degree in **Petroleum Engineering**. Further, he is a **Certified Instructor/Trainer** and a **Peer Reviewer**. Dr. Hesham is an active member of Egyptian Engineering Syndicate and the Society of Petroleum Engineering. Moreover, he has published technical papers and journals and has delivered numerous trainings, workshops, courses, seminars and conferences internationally.

PE0273 - Page 4 of 18

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

Day I		
0730 - 0800	Registration & Coffee	
0800 - 0815	Welcome & Introduction	
0815 - 0830	PRE-TEST	
0830 - 0930	<i>Introduction to Process Simulation</i> : Understanding the Basics, Importance & Applications	
0930 - 0945	Break	
0945 - 1030	Process Modeling Fundamentals : Principles of Process Modeling, Thermodynamic Models & Selection Criteria	
1030 - 1130	<i>Simulation Software Overview</i> : Introduction to Various Simulation Tools (e.g., Aspen HYSYS, PIPESIM)	
1130 - 1230	<i>Hydraulic Simulation Basics</i> : Understanding Fluid Dynamics, Pressure Drop Calculations & Flow Assurance	
1230 - 1245	Break	
1245 - 1320	Data Collection & Analysis: Gathering & Interpreting Data for Simulation	
1350 - 1420	<i>Case Study Discussion</i> : <i>Review of a Simple Process Simulation Scenario</i>	
1420 - 1430	Recap	
1430	Lunch & End of Day One	

Day 2

Day Z		
0730 – 0830	Dynamic vs. Steady State Simulation: Differences & Applications	
0830 - 0930	Advanced Thermodynamics : Complex Thermodynamic Models in Process Simulations	
0930 - 0945	Break	
0945 – 1130	Reactor Modeling & Simulation : Techniques for Simulating Chemical Reactors	
1130 – 1230	Distillation Column Simulation : Detailed Approach to Modeling Separation Processes	
1230 - 1245	Break	
1245 – 1345	<i>Heat Exchanger Design & Simulation</i> : Approaches to Modeling Heat Transfer Operations	
1345 - 1420	Interactive Session: Solving Complex Process Simulation Problems	
1420 - 1430	Recap	
1430	Lunch & End of Day Two	

PE0273 - Page 5 of 18 PE0273-02-24|Rev.01|15 January 2024

Day 3

0730 - 0830	Pipeline Simulation Techniques: Methods for Simulating Fluid Flow in	
	Pipelines	
0830 - 0930	Pump & Compressor Modeling : Detailed Simulation of Pumping &	
	Compression Systems	
0930 - 0945	Break	
0945 - 1130	Slug Flow & Surge Analysis: Understanding & Modeling Slug Flow in Pipelines	
1120 1220	Multiphase Flow Simulation: Techniques for Handling Multiphase Flows in	
1130 – 1230	Hydraulic Simulations	
1230 - 1245	Break	
1245 - 1345	Pressure Relief & Flare System Design: Simulation of Safety Systems in Process	
1243 - 1343	Plants	
1345 - 1420	Practical Exercise: Hands-on Hydraulic Simulation Project	
1420 – 1430	Recap	
1430	Lunch & End of Day Three	

Dav 4

Day 4	
0730 - 0830	Process Optimization Techniques : Methods for Optimizing Process Conditions
0830 - 0930	Advanced Control Strategies: Implementing Control Systems in Process
0830 - 0930	Simulations
0930 - 0945	Break
0945 - 1130	Energy Integration & Optimization : Techniques for Energy Saving & Efficiency
1120 1020	Debottlenecking Process Plants: Identifying & Resolving Bottlenecks in
1130 – 1230	Processes
1230 – 1245	Break
1245 - 1345	Economic Analysis in Process Design : Cost Considerations in Process Design &
	Optimization
1345 - 1420	Group Workshop: Real-life Case Study on Process Optimization
1420 – 1430	Recap
1430	Lunch & End of Day Four

Dav 5

Day 5	
0700 - 0830	<i>Integrating Process & Hydraulic Simulations</i> : Techniques for Effective Integration
0830 - 0930	Risk Management in Process Design : Identifying & Managing Risks in Process & Hydraulic Designs
0930 - 0945	Break
0945 – 1030	Sustainability & Environmental Considerations : Incorporating Green Engineering Principles
1030 – 1130	Advanced Process Safety Management : Enhancing Safety through Design & Simulation
1130 - 1230	Project Management for Process Engineers : Managing Projects & Interdisciplinary Teams
1230 - 1245	Break
1245 - 1345	Final Project Presentation : Participants Present their Simulation Projects & Insights
1345 - 1400	Course Conclusion
1400 - 1415	POST TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

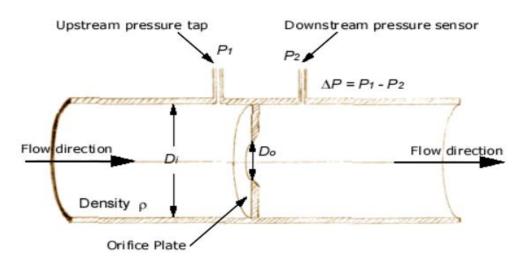
PE0273 - Page 6 of 18

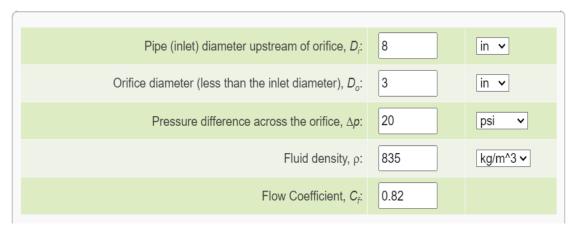
Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using various online system calculator.

D - 203 jocker L - 563 jocker L - 563 jocker L - 102 jocker L - 102 jocker	Element of pipe One (Insel Task V) (Ages) (Insel V) Density of pipe 1 (Insel V) Per regimes: Insel V) Flow medium Per regimes: Insel V) Flow medium Per regimes: Insel V) Per r	
Tank Volume Calculator Nozzle Discharge Pressure:	Pressure Drop Online-Calculator	
psi ↓ Diameter:	SPRAY BAR NOZZLE CONFIGURATION CHART Write/Leving Technologies, Inc. High Celevice Nozzle Flow Chart -FLOW - GPM 0 Pressure Inclusion Online Online Online	
CALCULATE	Backes (1)220 May (2)200 May<	
Flow Rate:	0.011 0.07 0.42 0.43 0.46 0.55 0.012 0.44 0.90 0.54 0.66 0.82 0.013 0.51 0.59 0.63 0.66 0.73 0.014 0.00 0.69 0.73 0.60 0.73 0.014 0.00 0.69 0.73 0.60 0.84 0.015 0.06 0.74 0.84 0.89 0.77	
Nozzle Discharge Nozzle Calculator The horsepower required to adiabatic compression of air can be calculated with the calculator below:		
Horsepower Calculate	Units SI(bar) V	
Primary Pressure Secondary Pressure Diameter of Orifice	0 barG 0 barG 0 mm	
Water Flow Rate through an Or	ifice Calculator	

PE0273 - Page 7 of 18

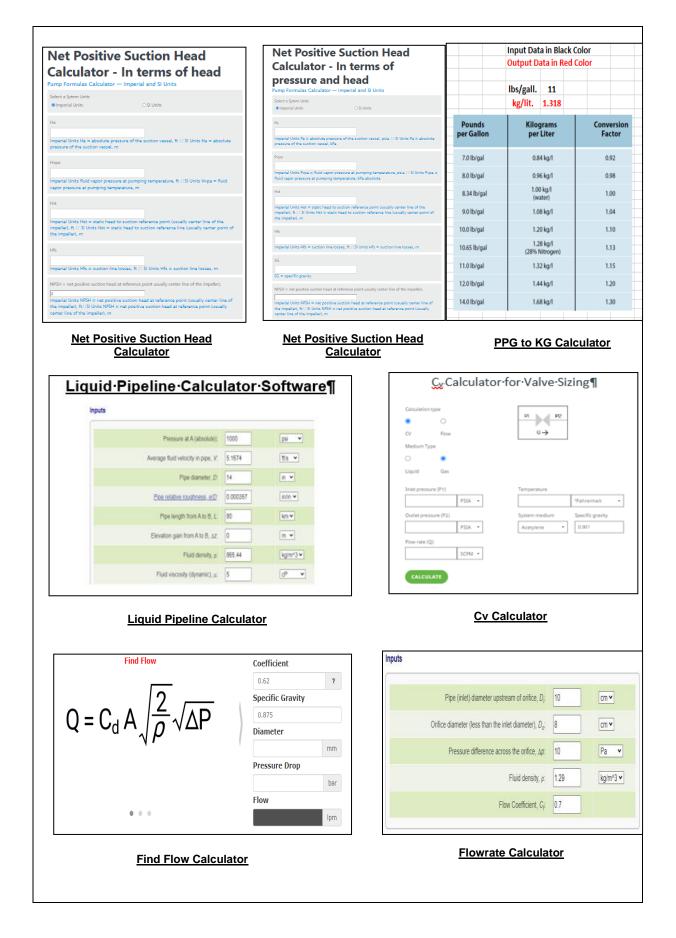

Convert Cubic Feet Of Natural Gas to Barrels Of Dil Equivalent Cubic Feet Of Natural Gas Barrels Of Oll Equivalent (bboe) 0	Corrosion Rate Calculator Enter data in given fields and click on Calculate for resultant corrosion rate. Weight Loss Density microgm v gm/cm3 v Area Time mm2 v millisec v Calculate Result: Corrosion Rate in mpy v		
Cubic Feet Calculator Corrosion Rate Calculator			
HYDRONICS CALCULATOR Water velocity calculator	Pipe·Pressure·Loss·Calculator¶		
index free dag gen Pop andere jonnes V v Marine Marine Marine Marine Marin	Pressure at A (absolute): 100 kPa 💌		
	Average fluid velocity in pipe, V. 1		
Minimum pipe diameter calculator	Pipe diameter, D. 10 cm 🕶		
inter File Star (gen) gen New Wecks (their) Constrained and Star (Star (Eice relative roughnesset/2: 0 m/m v		
and the second s	Pipe length from A to B, L: 50 m 💌		
Water flow rate calculator	Elevation gain from A to B, Δz: 0 m 💌		
Part Taxanan (anana) ana ana ana ana ana ana ana ana ana ana	Fluid density, p: 1 kgl Fluid viscosity (dynamic), µ: 1 CP		
Hydronics Calculator Pipe Pressure Loss Calculator BTU-Calculator-&-BTU-Formulas-for-Water-Circulating-Heat-Transfer¶ Weighed Water Test Measure the flow of water through your process by timing how long it takes to fill a known volume container. For example, allow your process water to fill a 5-gallon container. Accurately measure the water temperature entering and exiting your process. Use this formula to calculate BTU cooling required: Formula BTU = Flow Rate in GPM (of water) x (Temperature Leaving Process - Temperature Entering Process) x 500.4*Formula changes with fluids others than straight water. BTU Calculator for Weighed Water Test Water Flow Rate in Gallons Per Minute Intel Water Temperature To Process Outlet Water Temperature From Process GPM "F "F			


PE0273 - Page 8 of 18

Inputs

Answers

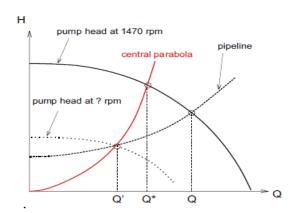
Velocity at the inlet, V_i :	2.10 m/s	m/s ∨
Volumetric Flowrate, Q:	1080 gpm	gpm 🗸
Mass Flowrate:	56.7 kg/s	kg/s ✓


Flow Rate through an Orifice or Valve Calculator

PE0273 - Page 9 of 18

PE0273 - Page 10 of 18

		horsepower hour gallon [U.S.] of diesel o	il
Convert	Coefficient Discharge		
	Actual discharge (Q)	<u>m³/s •</u>	
	Head (H)	<u>m.*</u>	
	Diameter (d) Area (A)	<u>m •</u> m² •	
	Flow parameters		
		H Q	
	Water level		
	Calculate discharge coefficient	hydraulic head 💌	


PE0273 - Page 11 of 18

Liquid Pumpin	g Program	Output Results	
		Flow Velocity, ft/s	5.0154
Input Data		Erosion Velocity, ft/s	13.440
API	28	E/I.D.	0.001786
c.P.	5	sp.gr.	0.8871
1000 bbl/d	3.3	Re	19290.3
•		F	0.02987
Length, km	2.4384	Hf, psi	153.67
I.D., in.	2.800	Hf, m water	108.17
Rough. (E), in.	0.005	Total Pump Dich. psi	276.68
Difference in elev., m	50	TDP, psi	196.68
Destination press., psi	60	Hydr. Power, HP	16.99
Pump Suc. psi	80	Hydr. Power, Kw	12.67
		Shaft Power, HP	18.88
Overall Pump Eff., %	65	Shaft Power, Kw	14.083
Motor Eff., %	90	Nama Plate Motor HP	23.60
Motor Loading %	80	Nama Plate Motor Kw	17.60

A pump running at 1470[*rpm*] with $H_{pump} = 45 - 2781Q^2$ head delivers water into a pipeline with $H_{pipe} = 20 + 1125Q^2$. Calculate the required revolution number for the reduced flow rate $Q' = 0.05[m^3/s]$.

Solution:

- The actual working point is given by the solution of $H_{pump} = H_{pipe}$, which gives $Q = 0.08[m^3/s]$ and H = 27.2[m].
- Affinity states that while varying the revolutionary speed, H/n^2 and Q/n remain constant. Thus, also H/Q^2 remains constant, let's denote this constant by a. So, while varying the revolutionary speed, the working point moves along the *central parabola* (see figure), given by $H_{ap} = a Q^2$.

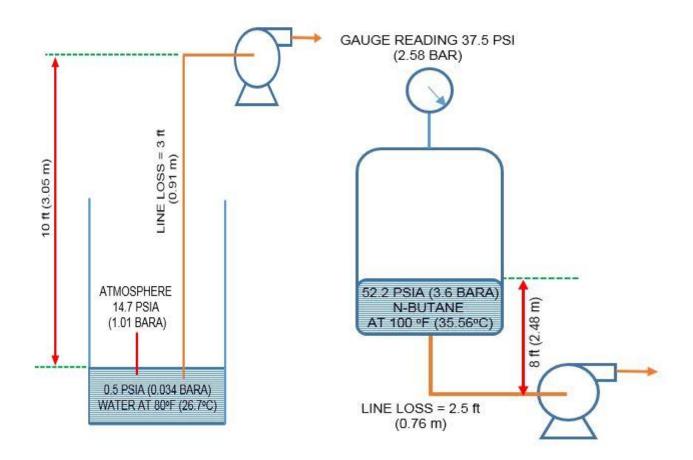
However, as Q' is given and we also know that this point has to be located on the pipeline characteristic, we know that $H' = 20 + 1125 \times 0.05^2 = 22.81 [m]$. Thus, the parameter of the affine parabola is $a = H'/Q'^2 = 9125$.

 Q^* is given by the intersection of the affine parabola and the original pump characteristic: $H_{ap}(Q^*) = H_{pump}(Q^*)$, which gives $Q^* = 0.06148[m^3/s]$ with $H^* = 34.5[m]$.

Now we can employ affinity between Q^* and Q':

$$n' = n^* \frac{Q'}{Q^*} = 1470 \times \frac{0.05}{0.06148} = 1195.5[rpm]$$

and just for checking the calculation


$$H' = H^* \left(\frac{n'}{n^*}\right)^2 = 34.5 \times \frac{1195.5^2}{1470^2} = 22.81[m].$$

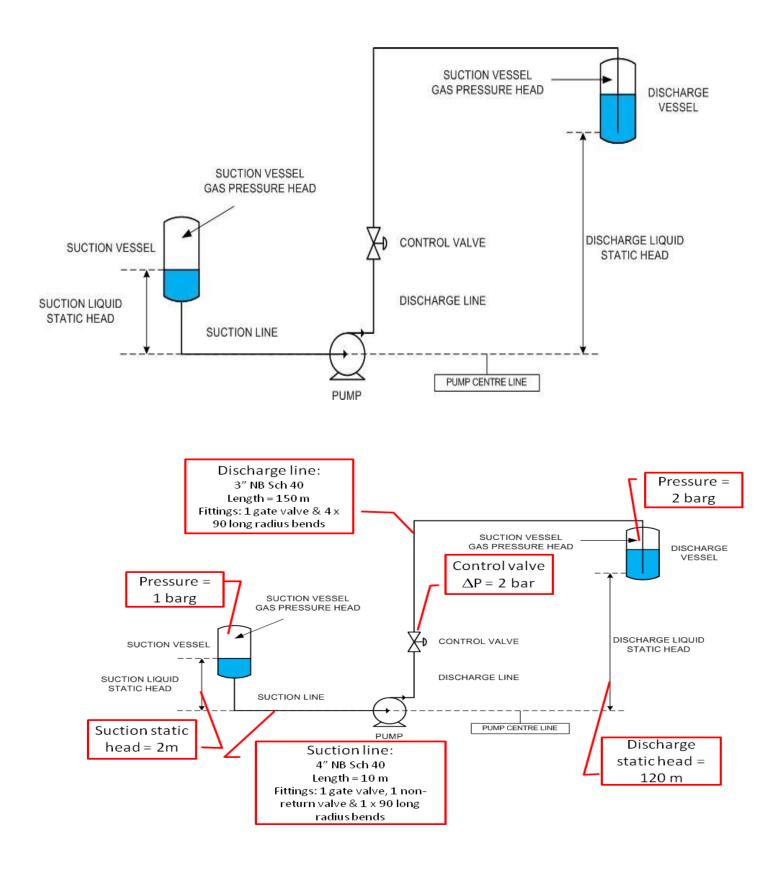
PE0273 - Page 12 of 18

NPSHA of pump – suction lift

NPSHA of pump – at boiling point SG of n-butane at 100 deg F = 0.56

NPSHA = Hatmp.+/- Hs – Hf – Hvap.

https://engineeringunits.com/net-positive-suction-head-calculator/?utm_content=cmp-true http://www.pressure-drop.com/Online-Calculator/index.html


NPSH Calculations		Output Results	
Input Data		Flow Velocity, ft/s	2.6620
API	36	=E/I.D.	0.001671
c.P.	3	sp.gr.	0.8448
Vapor pressure, psi	10	Re	17363.9
Atmp. Pressure, psi	14.7	F	0.0302
Height above pump, ft	20	•	
1000 bbl/d	2.0	Hf, psi	0.048
Length, km	0.003	Hf, ft water	0.111
I.D., in. 2.992		NPSHA, ft oil	32.72
Rough. (E), in.	0.005	NPSHA, ft water	27.64

PE0273 - Page 13 of 18

PE0273 - Page 14 of 18

Calculator

PUMP DETAILS

Pump tag number Suction vessel tag number Discharge vessel tag number	P-001 V-001 V-002
Barometric pressure NPSH available margin Pump efficiency	P _{atm} H _{margin} γ 70%
FLUID PROPERTIES	
Fluid Phase Flowrate Density Viscosity Vapour pressure	Water Liquid m 30000 ρ 998 μ 1 P 0.023 bara
VESSEL GAS PRESSURES	
Suction vessel gas pressure Discharge vessel gas pressure	P _{suc_vessel} 1 barg P _{dis_vessel} 2 barg
STATIC HEADS	
Suction static head Discharge static head	H _{suc_static_head} 2 m H _{dis_static_head} 120 m

PIPELINES

		Suction Line	Discharge Line	
Pipe nominal diameter		4 🗸	3 🛩	inch
Pipe schedule		Sch 40 💙	Sch 40 🛩	
Pipe internal diameter	d	102.26	77.92	mm
Pipe length	L	10	150	m
Absolute roughness	е	0.046	0.046	mm

OUTPUTS

Volumetric flow rate	Q	30.060 m3/hr		
		Suction Line	Discharge Line]
Relative roughness	e:d	0.00045	0.00059]
Flow area	A	0.00821	0.00477	m2
Velocity	u	1.02	1.75	m/s
Reynolds No.	Re	103758	136170	
Flow regime		turbulent	turbulent	
Friction factor	f	0.02011	0.02010	
Pipe velocity head loss	K _{pipe}	1.966	38.695	
Fittings total velocity head loss	K _{fittings}	1.724	2.152]
Frictional pressure loss		0.02	0.62	bar
Frictional head loss	H _{friction}	0.19	6.38	m

	В	
Pump suction pressure	P _{suction}	2.19 bara
Pump suction head	H _{suction}	22.37 m
Pump discharge pressure	Pdischarge	15.39 bara
Pump discharge head Net positive suction pressure	H _{discharge}	157.16 m
available	PNPSHA	2.17 bara
Net positive suction head available	NPSHa	22.13 m
Pump total differential pressure Pump total differential head	ΔΡ _{ρυmp} Η _{ρυmp}	13.20 bar 134.79 m

Pump total differential head Pump absorbed power

PE0273 - Page 15 of 18

PE0273-02-24|Rev.01|15 January 2024

E

15.74 kW

Results of above calculations may be confirmed through either of followinglinks:

https://www.swagelok.com/en/toolbox/cv-calculator

https://experttoolsonline.com/danfoss/orifice_calculator

https://www.efunda.com/formulae/fluids/calc_orifice_flowmeter.cfm

https://www.omnicalculator.com/physics/coefficient-of-discharge

Power Calculations: https://inventory.powerzone.com/resources/centrifugalpump-powercalculator/%3Aflu%3DGPM%3Apru%3DHEAD%20FT%3 Apu%3DHP

http://irrigation.wsu.edu/Content/Calculators/General/Required-Water-Pump-HP.php

Required Compressor Horsepower

https://www.engineeringtoolbox.com/horsepower-compressed-air-d_1363.html

Input Data		Output Results	
T1, F	60		
к	1.35	Compression Ratio	34.014
P1, psi	14.7	Cp, J/kg/K	1107
P2, psi	500	Gas, cfm	36791.50
Gas sp.gr.	1	•	30791.30
No. of Comp. stages	3	Gas, kg/s	21.250
Gas million SCMD	1.5	Theoretical Power, HP	9731.847
Eff. of Gas Comp., %	85	•	10701.07
Eff. of Driving Motor, %	90	Total Required HP	12721.37

Heater Duty

https://www.advantageengineering.com/fyi/288/advantageFYI288.php

		Output Results	
Input Data		Delta Temp., C	15.6
input Data		Mega Watt	0.220
Million DTU/hr	0.75	Billion Joule/hr.	0.791
Million BTU/hr.	0.75	gpm	25.0
ADI	10.0	gallon/hr.	1498.4
API	10.0	Lit./min.	94.5
Constitutions DTU/Ib/E	1 00	m3/hr.	5.7
Specific Heat, BTU/lb/F	1.00	1000 bbl/d	0.856
Dalka Tanan - F	C 0	Required Diesel Lit./day	502.90
Delta Temp., F	60	Required Diesel bbl/d	3.16
llaster Eff 0/	100	Required Gas, 1000 ft3/d	16.364
Heater Eff., %	100	Required crude oil, bbl/d	3.268

https://www.enggcyclopedia.com/2011/09/problem-solving-heat-exchangertubeside-pressure-drop-calculation/

AWS

PE0273 - Page 16 of 18

Input Data		Output Results	
Mass Flow Rate, kg/hr.	2000.0	cm3/s	562.303
Fluid Density, Kg/m3	988.0	V, cm/s	110.9720
Visc., c.P.	0.53	Re	52544.59
Pipe Diameter (D), in.	1	f	0.0261
Roughness (E), mm	0.045	Total Hf, cm (per single tube)	22.5583
Tube Length, m	3.5	Total Hf, psi (per single tube)	0.3166
No. of tubes	1	Total Hf, bar (per single tube)	0.0218

Heat exchanger tube side pressure drop calculation

Calculate the tube side pressure drop for the following heat exchanger specification,

Process fluid = water Inlet pressure = 4 barg Inlet temperature = 50^oC Outlet temperature = 30^oC Tubeside flowrate = 50000 kg/hr Number of tubes = 25 Tube ID (internal diameter) = 1 inch Tube length = 3.5 m

Total volumetric flow = 50000 kg/hr \div 988.0 kg/m³ = 50.61 m³/hr Volumetric flow in each 1" tube = 50.61 \div 25 = 2.02 m³/hr Pressure loss per unit length of the tube is then calculated using EnggCyclopedia's pressure drop calculators for pipes and tubes. This calculator is based on Darcy-Weisbach equation.

Pressure loss across a single tube (ΔP/L) = 6.17 bar/km

SINGLE PHASEFLOW INPUTS		
W – <u>Mass</u> flow capacity	2000	kg/h
$\rho - \underline{Density}$ of fluid	988	kg/m ³
$\mu - \underline{\text{Viscosity}}$ of fluid (either liquid or gas)	0.53	cP
PIPE SPECIFICATIONS		
e – Effective roughness of the pipe	0.045	nm
d – Nominal diameter of the pipe	1	inches
sch – <u>pipe schedule</u>	STD	
Calculate pressure loss	Reset	
RESULTS		
Fluid Velocity	1.110	<u>m/s</u>
Volumetric flow	2.02	m ³ /hr
Reynold's No.	52557.9	
Pressure loss	6.1715	<u>bar</u> /km

Tube length (L) = 3.5 m Tubeside pressure drop (ΔΡ) = 6.17 × 3.5 / 1000 = 0.0216 bar

PE0273 - Page 17 of 18

Another alternative is to directly use EnggCyclopedia's Heat Exchanger Tube side Pressure Drop Calculator. All the inputs given in the sample problem statements are given to the calculator and pressure drop across the tubeside is calculated as output. This calculator uses the same basic steps discussed above and hence the answer also matches with the figure above (0.0216 bar). The following image is a snapshot of this direct calculation of tubeside pressure drop.

Exchanger tubeside pressure drop

Tubeside inputs		
Total tubeside <u>mass</u> flow	50000	kg/hr
Tubeside Density	988	kg/m ³
Tubeside Viscosity	0.53	cP
Number of tubes	25	
Total tube length (accounting for all tube passes)	3.5	m
Tube nominal diameter	1	inches
Tubeside roughness	0.045	mm
Calculate pressure drop	Reset	
Results		
Tubeside pressure drop	0.0216	bar

Course Coordinator

Kamel Ghanem, Tel: +971 2 30 91 714, Email: kamel@haward.org

PE0273 - Page 18 of 18

